Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 14(11): e31952, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36452915

ABSTRACT

INTRODUCTION: One of the unique properties of the nickel-titanium (NiTi) archwires is the release of light continuous forces with a wide range of activation, which is affected by the method of ligating the wire to the bracket. Both elastomeric modules and metallic ligatures are the most common components to ligate the archwire to the bracket. This study aimed to evaluate the effect of elastomeric versus metallic ligatures on the released forces of three types of rectangular 0.016- by 0.022-inch NiTi wires. MATERIALS AND METHODS: This investigation evaluated three different situations of ligating the NiTi archwires to metallic brackets. The produced forces by these wires were evaluated using a modified three-point bending test (a universal testing machine: Testometric 350M®, Instron, Lincoln Close, Rochdale, England). A 0.022-inch slot-size premolar bracket was used for this investigation with zero torque and zero angulation (Master Series®, American Orthodontics, Sheboygan, USA). The first situation involved no ligation to the metallic brackets using three types of NiTi wires, whereas the second situation (the elastic ligation) involved the use of colored elastomeric modules with a 0.045-inch inner diameter and a 0.115-inch outer diameter (Color Ligatures®, American Orthodontics, Sheboygan, USA) to ligate the archwire into the metallic bracket's slot. In the third situation (metallic ligation), stainless steel metallic ligatures with a 0.012-inch (Preformed Ligature Wire®, American Orthodontics, Sheboygan, USA) were used to perform the ligation. The employed NiTi wires were 0.016 x 0.022-inch in diameter (American Orthodontics®, Sheboygan, Wisconsin, USA), and they were of three different types: (1) the superplastic wires (NT3-SE®), the thermally activated wires at 25°C (Thermal Ti-D®), and the thermally activated wires at 35°C (Thermal Ti-Lite®). RESULTS: The thermally activated wires at 35°C (Thermal Ti-Lite®) recorded the lowest force levels for the three ligation methods, while the highest result appeared with the superelastic type (NT3-SE®) and the thermally activated type at 25°C (Thermal Ti-D®) which showed a varied force for different ligation methods. Regarding the three different NiTi wires used, the elastic and metallic ligation increased the force levels for the superelastic type (NT3-SE®) over non-ligation by 50% and 110%, respectively, whereas the elastic ligation raised only the forces for the thermal types (Thermal Ti-D® and Thermal Ti-Lite®) by 75% and 22%, respectively. Both thermally activated types (Thermal Ti-D® and Thermal Ti-Lite®) released forces in the elastic ligation method greater than that of the metallic method by 125% and 20%, respectively. CONCLUSION: The elastic ligation method raised the unloading forces in comparison with the non-ligation for all tested archwires, whereas the metallic ligation method raised the released forces for the superelastic type (NT3-SE®) and decreased those related to the activated types (Thermal Ti-D®, Thermal Ti-Lite®) due to the increased friction and the instability of the crystalline structure. Only the heat-activated type at 35°C (Thermal Ti-Lite®) reflected the unique properties of the NiTi wires in producing light continuous forces with a wide range of activations regardless of the type of ligation.

2.
Cureus ; 14(7): e27206, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35898807

ABSTRACT

Background Nickel-titanium (NiTi) archwires are considered the most attractive wires during the first stage of orthodontic treatment because of their unique properties throughout several generations. This study aimed to evaluate three different NiTi wires in terms of their elemental composition, transformation behavior, crystalline structure, and mechanical properties. Materials and methods The study used three different groups of NiTi archwires with dimensions of 0.016 x 0.022-inch (American Orthodontics®, Sheboygan, WI, USA). The first group included six superelastic NiTi archwires (NT3-SE®), with normal force and a stable structure that was not affected by temperature changes. The second group included six heat-activated NiTi archwires activated at 25°C (Thermal Ti-D®), with moderate force and a sensitive structure to thermal changes, especially at room temperature. The third group included six heat-activated NiTi archwires activated at 35°C (Thermal Ti-Lite®), with light force and a sensitive structure to thermal changes, especially at body temperature. X-ray fluorescence (XRF) was performed to determine wire element composition, whereas differential scanning calorimetry (DSC) was performed to determine the austenite finish temperature (Af). The X-ray diffraction (XRD) analysis was used to identify the crystalline structure at room temperature, and a three-point bending test was carried out under constant temperature (37°C) with respect to the instructions of ISO15841/DIS to evaluate the mechanical properties of these wires. Results The XRF analysis revealed that the superelastic NiTi archwires (NT3-SE) were composed of NiTi and chrome, whereas the heat-activated wires (Thermal Ti-D and Thermal Ti-Lite) were composed of NiTi and copper. The DSC showed the Af was at +16.84°C for the superelastic type (NT3-SE), +23°C for the heat-activated at 25°C (Thermal Ti-D), and +33.99°C for the heat-activated at 35°C (Thermal Ti-Lite). The XRD analysis identified the crystalline structure at room temperature for the superelastic type (NT3-SE) as austenite, while for thermal types (Thermal Ti-D and Thermal Ti-Lite) were a compound structure of austenite and martensite phase. Finally, the bending test showed that the highest forces were delivered from the superelastic type (NT3-SE), followed by heat-activated at 25°C (Thermal Ti-D), while the lowest forces were delivered from heat-activated at 35°C (Thermal Ti-Lite). There was no significant difference between the superelastic type (NT3-SE) and thermally activated type at 25°C (Thermal Ti-D), while there was a significant difference between the two previous types and the thermally activated type at 35°C (Thermal Ti-Lite) for all studied unloading points. Conclusions The thermal types of archwires (Thermal Ti-D and Thermal Ti-Lite) had lower unloading values in comparison with the superelastic type (NT3-SE). The elemental composition was different between the superelastic wires and the thermal ones. The superelastic wires were also different from the other two types in terms of crystalline structure. The three types of archwires had an activation degree located in the range of oral cavity variations.

SELECTION OF CITATIONS
SEARCH DETAIL
...