Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1362722, 2024.
Article in English | MEDLINE | ID: mdl-38646634

ABSTRACT

Date palm cultivation has thrived in the Gulf Cooperation Council region since ancient times, where it represents a vital sector in agricultural and socio-economic development. However, climate change conditions prevailing for decades in this area, next to rarefication of rain, hot temperatures, intense evapotranspiration, rise of sea level, salinization of groundwater, and intensification of cultivation, contributed to increase salinity in the soil as well as in irrigation water and to seriously threaten date palm cultivation sustainability. There are also growing concerns about soil erosion and its repercussions on date palm oases. While several reviews have reported on solutions to sustain date productivity, including genetic selection of suitable cultivars for the local harsh environmental conditions and the implementation of efficient management practices, no systematic review of the desertic plants' below-ground microbial communities and their potential contributions to date palm adaptation to climate change has been reported yet. Indeed, desert microorganisms are expected to address critical agricultural challenges and economic issues. Therefore, the primary objectives of the present critical review are to (1) analyze and synthesize current knowledge and scientific advances on desert plant-associated microorganisms, (2) review and summarize the impacts of their application on date palm, and (3) identify possible gaps and suggest relevant guidance for desert plant microbes' inoculation approach to sustain date palm cultivation within the Gulf Cooperation Council in general and in Qatar in particular.

3.
Chemosphere ; 351: 141245, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242513

ABSTRACT

Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to µg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.


Subject(s)
Microalgae , Wastewater , Humans , Biomass
4.
Sci Total Environ ; 873: 162384, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36841414

ABSTRACT

Rapid aquaculture industry development contributed to a major increase in aquaculture wastewater generation. In the context of a circular economy, aquaculture wastewater treatment should simultaneously recover nutrients from the wastewater. Among many treatment methods, bioremediation using microalgae could be a cost-effective and environmentally friendly system that can be applied to treat aquaculture wastewater and simultaneously produce high-value microalgal biomass. This study explored the feasibility of treating brackish wastewater (0.8 % NaCl) generated from a Qatari commercial tilapia farm by microalgae. At first, 10 strains were grown using wastewater from the local farm in an indoor experiment. Based on nitrogen assimilation, biomass yield, biomass quality, and ease of harvesting, 4 candidate strains (Haematococcus sp., Neochloris sp., Monoraphidium sp., and Nostoc sp.) were shortlisted for outdoor growth experiments. Although Nostoc sp. could not grow outdoor in the wastewater, the other three strains were able to assimilate at least 70.5 % of the total nitrogen in the wastewater. Haematococcus sp. and Neochloris sp. could be harvested using self-settling, whereas Monoraphidium required an energy-intensive tangential flow filtration membrane process. Hence, the overall energy requirement for bioremediation, including biomass dewatering, for Haematococcus sp., Neochloris sp., and Monoraphidium sp. were determined as 0.64, 0.78, and 5.68 MJ/m3, respectively. Neochloris sp. had almost twice the biomass yield compared to Haematococcus sp. - suggesting that Neochloris sp. could be a potential candidate for aquaculture wastewater treatment.


Subject(s)
Chlorophyceae , Microalgae , Wastewater , Biodegradation, Environmental , Aquaculture/methods , Biomass , Nitrogen/analysis
5.
Mol Cell Biochem ; 478(9): 1915-1925, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36583795

ABSTRACT

Oxidative stress has recently been identified as an important mediator of cardiovascular diseases. The need to find efficient antioxidant molecules is essential in the disease's prevention. Therefore, the present study aimed to evaluate the potential of microalgae bioactive in protecting H9c2 cardiomyoblasts from H2O2-induced oxidative stress. Four microalgal species were investigated for their antioxidant capacity. A qualitative assessment of oxidative stress in H9c2 cardiomyoblasts stained with DCFH-DA, treated with the highly active microalgae extracts, was performed. The protein expression of total caspase-3 was also examined to investigate whether the extract protects H9c2 cardimyoblasts from H2O2-induced apoptosis. High antioxidant activity was observed for the hexanoic extracts after 10 days of cultivation. Asterarcys quadricellulare exhibited the highest antioxidant capacity of 110.59 ± 1.75 mg TE g-1 dry weight and was tested against H9c2 cardiomyoblasts, which were initially subjected to H2O2-induced oxidative stress. This hexanoic extract protected against H2O2 induced oxidative stress with a similar scavenging capacity as N-Acetylcysteine. Furthermore, total caspase-3 was increased following treatment with the hexanoic extract, suggesting that A. quadricellulare also had anti-apoptotic properties. The outcome of our study highlighted the possible use of the local A. quadricellulare strain QUCCCM10 as a natural, safe, and efficient antioxidant to prevent cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Chlorophyceae , Antioxidants/pharmacology , Antioxidants/metabolism , Chlorophyceae/metabolism , Caspase 3/metabolism , Hydrogen Peroxide/pharmacology , Cardiovascular Diseases/metabolism , Oxidative Stress , Apoptosis , Reactive Oxygen Species/metabolism , Myocytes, Cardiac/metabolism
6.
Trends Biotechnol ; 41(6): 750-759, 2023 06.
Article in English | MEDLINE | ID: mdl-36581482

ABSTRACT

Algae are a promising feedstock for the sustainable production of feed, fuels, and chemicals. Especially in arid regions such as the Arabian Peninsula, algae could play a significant role in enhancing food security, economic diversification, and decarbonization. Within this context, the regional potential of algae commercialization is discussed, exploring opportunities and challenges across technical, societal, and political aspects. Climate, availability of process inputs, and funding opportunities are identified as essential strengths that increase the global competitiveness of regional algae production. Implementation challenges include climate change, securing human resources, and the vital transitioning from research to commercial scales. With balanced management, however, the region's efforts could be the push that is necessary for algal technologies to take off globally.


Subject(s)
Biofuels , Microalgae , Humans , Plants , Biotechnology , Climate Change , Biomass
7.
Front Plant Sci ; 13: 1033092, 2022.
Article in English | MEDLINE | ID: mdl-36275511

ABSTRACT

Zinc (Zn), which is regarded as a crucial micronutrient for plants, and is considered to be a vital micronutrient for plants. Zn has a significant role in the biochemistry and metabolism of plants owing to its significance and toxicity for biological systems at specific Zn concentrations, i.e., insufficient or harmful above the optimal range. It contributes to several cellular and physiological activities of plants and promotes plant growth, development, and yield. Zn is an important structural, enzymatic, and regulatory component of many proteins and enzymes. Consequently, it is essential to understand the interplay and chemistry of Zn in soil, its absorption, transport, and the response of plants to Zn deficiency, as well as to develop sustainable strategies for Zn deficiency in plants. Zn deficiency appears to be a widespread and prevalent issue in crops across the world, resulting in severe production losses that compromise nutritional quality. Considering this, enhancing Zn usage efficiency is the most effective strategy, which entails improving the architecture of the root system, absorption of Zn complexes by organic acids, and Zn uptake and translocation mechanisms in plants. Here, we provide an overview of various biotechnological techniques to improve Zn utilization efficiency and ensure the quality of crop. In light of the current status, an effort has been made to further dissect the absorption, transport, assimilation, function, deficiency, and toxicity symptoms caused by Zn in plants. As a result, we have described the potential information on diverse solutions, such as root structure alteration, the use of biostimulators, and nanomaterials, that may be used efficiently for Zn uptake, thereby assuring sustainable agriculture.

8.
Sci Total Environ ; 847: 157648, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35908710

ABSTRACT

Several edible and non-edible oil sources are currently being developed as renewable basestocks for biolubricant production. However, these feedstocks possess undesirable physicochemical properties limiting their lubricant applications. Chemical modification and additive-based routes could be used to modify their properties -suitable for different biolubricant applications. The first part of this study compares how the selected modifications affect the properties of the basestocks. Next, the techno-economic analysis (TEA) was conducted to study 4 selected biolubricants and a potential biolubricant derived from marine microalgae biomass. Oxidative stabilities of chemically modified biolubricants followed the order of epoxidation> triesterification> estolide. Pour points of triesters showed minimal increments and reduced for estolides, whereas epoxidation increased pour points. Estolides exhibit maximum kinematic viscosity increment among chemical modification routes, followed by TMP-transesterification and epoxidation. The oxidative stability of chemically modified biolubricants was higher than additized biolubricants; conversely, the viscosity increments and pour point reductions for additized biolubricants were higher than chemically modified biolubricants. TEA results show that the unit cost for producing 1-kg estolide was the highest among the chemical modification routes. The unit cost per kilogram of jatropha biolubricant produced using the additive-based route was lower than chemically modified biolubricants. Due to a high microalgal oil feedstock cost, the unit cost per kilogram of additized microalgae oil biolubricant was more than the unit cost of additized Jatropha oil. The techno-economic feasibility of biolubricant production from marine microalgal oil could be improved by adopting a biorefinery approach.


Subject(s)
Microalgae , Biofuels , Biomass , Esterification , Lubricants/chemistry , Oxidation-Reduction
9.
Front Plant Sci ; 13: 881242, 2022.
Article in English | MEDLINE | ID: mdl-35646026

ABSTRACT

Potentially toxic elements (PTEs) such as cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), polluting the environment, pose a significant risk and cause a wide array of adverse changes in plant physiology. Above threshold accumulation of PTEs is alarming which makes them prone to ascend along the food chain, making their environmental prevention a critical intervention. On a global scale, current initiatives to remove the PTEs are costly and might lead to more pollution. An emerging technology that may help in the removal of PTEs is phytoremediation. Compared to traditional methods, phytoremediation is eco-friendly and less expensive. While many studies have reported several plants with high PTEs tolerance, uptake, and then storage capacity in their roots, stem, and leaves. However, the wide application of such a promising strategy still needs to be achieved, partly due to a poor understanding of the molecular mechanism at the proteome level controlling the phytoremediation process to optimize the plant's performance. The present study aims to discuss the detailed mechanism and proteomic response, which play pivotal roles in the uptake of PTEs from the environment into the plant's body, then scavenge/detoxify, and finally bioaccumulate the PTEs in different plant organs. In this review, the following aspects are highlighted as: (i) PTE's stress and phytoremediation strategies adopted by plants and (ii) PTEs induced expressional changes in the plant proteome more specifically with arsenic, cadmium, copper, chromium, mercury, and lead with models describing the metal uptake and plant proteome response. Recently, interest in the comparative proteomics study of plants exposed to PTEs toxicity results in appreciable progress in this area. This article overviews the proteomics approach to elucidate the mechanisms underlying plant's PTEs tolerance and bioaccumulation for optimized phytoremediation of polluted environments.

10.
Sci Total Environ ; 835: 155538, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35489502

ABSTRACT

The demand for aquaculture feed will increase in the coming years in order to ensure food security for a growing global population. Microalgae represent a potential fish-feed ingredient; however, the feasibility of their sustainable production has great influence on its successful application. Geographical locations offering high light and temperature, such as Qatar, are ideal to cultivate microalgae with high productivities. For that, the environmental and biological interactions, including field and laboratory optimization, for solar production and application of two native microalgae, Picochlorum maculatum and Nannochloris atomus, were investigated as potential aquaculture feed ingredients. After validating pilot-scale outdoor cultivation, both strains were further investigated under simulated seasonal conditions using a thermal model to predict light and culture temperature cycles for the major climatic seasons in Qatar. Applied thermal and light variations ranged from 36 °C and 2049 µmol/m2/s in extreme summer, to as low as 15 °C and 1107 µmol/m2/s in winter, respectively. Biomass productivities of both strains varied significantly with maximum productivities of 32.9 ± 2.5 g/m2/d and 17.1 ± 0.8 g/m2/d found under moderate summer conditions for P. maculatum and N. atomus, respectively. These productivities were significantly reduced under both extreme summer, as well as winter conditions. To improve annual biomass productivities, the effect of implementation of a simple ground heat exchanger for thermal regulation of raceway ponds was also studied. Biomass productivities increased significantly, during extreme seasons due to respective cooling and heating of the culture. Both strains produced high amounts of proteins during winter, 54.5 ± 0.55% and 44 ± 2.25%, while lipid contents were high during summer reaching up to 29.6 ± 0.75 and 28.65 ± 0.65%, for P. maculatum and N. atomus respectively. Finally, using acute toxicity assay with zebra fish embryos, both strains showed no toxicity even at the highest concentrations tested, and is considered safe for use as feed ingredient and to the environment.


Subject(s)
Microalgae , Animals , Aquaculture , Biomass , Microalgae/metabolism , Ponds , Qatar
11.
J Basic Microbiol ; 62(9): 1030-1043, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35467037

ABSTRACT

The increase in the human population causes an increase in the demand for nutritional supplies and energy resources. Thus, the novel, natural, and renewable resources became of great interest. Here comes the optimistic role of bioprospecting as a promising tool to isolate novel and interesting molecules and microorganisms from the marine environment as alternatives to the existing resources. Bioprospecting of marine metabolites and microorganisms with high biotechnological potentials has gained wide interest due to the variability and richness of the marine environment. Indeed, the existence of extreme conditions that increases the adaptability of marine organisms, especially planktons, allow the presence of interesting biological species that are able to produce novel compounds with multiple health benefits and high economical value. This review aims to provide a comprehensive overview of marine microbial bioprospecting as a growing field of interest. It emphasizes functional bioprospecting that facilitates the discovery of interesting metabolites. Marine bioprospecting was also discussed from a legal aspect for the first time, focusing on the shortcomings of international law. We also summarized the challenges facing bioprospecting in the marine environment including economic feasibility issues.


Subject(s)
Biodiversity , Bioprospecting , Aquatic Organisms , Biotechnology , Humans
12.
Life (Basel) ; 12(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35455085

ABSTRACT

Zinc (Zn) is plant micronutrient, which is involved in many physiological functions, and an inadequate supply will reduce crop yields. Its deficiency is the widest spread micronutrient deficiency problem; almost all crops and calcareous, sandy soils, as well as peat soils and soils with high phosphorus and silicon content are expected to be deficient. In addition, Zn is essential for growth in animals, human beings, and plants; it is vital to crop nutrition as it is required in various enzymatic reactions, metabolic processes, and oxidation reduction reactions. Finally, there is a lot of attention on the Zn nanoparticles (NPs) due to our understanding of different forms of Zn, as well as its uptake and integration in the plants, which could be the primary step toward the larger use of NPs of Zn in agriculture. Nanotechnology application in agriculture has been increasing over recent years and constitutes a valuable tool in reaching the goal of sustainable food production worldwide. A wide array of nanomaterials has been used to develop strategies of delivery of bioactive compounds aimed at boosting the production and protection of crops. ZnO-NPs, a multifunctional material with distinct properties and their doped counterparts, were widely being studied in different fields of science. However, its application in environmental waste treatment and many other managements, such as remediation, is starting to gain attention due to its low cost and high productivity. Nano-agrochemicals are a combination of nanotechnology with agrochemicals that have resulted in nano-fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and nano-insecticides being developed. They have anti-bacterial, anti-fungal, anti-inflammatory, antioxidant, and optical capabilities. Green approaches using plants, fungi, bacteria, and algae have been implemented due to the high rate of harmful chemicals and severe situations used in the manufacturing of the NPs. This review summarizes the data on Zn interaction with plants and contributes towards the knowledge of Zn NPs and its impact on plants.

13.
Front Bioeng Biotechnol ; 10: 1104914, 2022.
Article in English | MEDLINE | ID: mdl-36714622

ABSTRACT

In recent years, the increased demand for and regional variability of available water resources, along with sustainable water supply planning, have driven interest in the reuse of produced water. Reusing produced water can provide important economic, social, and environmental benefits, particularly in water-scarce regions. Therefore, efficient wastewater treatment is a crucial step prior to reuse to meet the requirements for use within the oil and gas industry or by external users. Bioremediation using microalgae has received increased interest as a method for produced water treatment for removing not only major contaminants such as nitrogen and phosphorus, but also heavy metals and hydrocarbons. Some research publications reported nearly 100% removal of total hydrocarbons, total nitrogen, ammonium nitrogen, and iron when using microalgae to treat produced water. Enhancing microalgal removal efficiency as well as growth rate, in the presence of such relevant contaminants is of great interest to many industries to further optimize the process. One novel approach to further enhancing algal capabilities and phytoremediation of wastewater is genetic modification. A comprehensive description of using genetically engineered microalgae for wastewater bioremediation is discussed in this review. This article also reviews random and targeted mutations as a method to alter microalgal traits to produce strains capable of tolerating various stressors related to wastewater. Other methods of genetic engineering are discussed, with sympathy for CRISPR/Cas9 technology. This is accompanied by the opportunities, as well as the challenges of using genetically engineered microalgae for this purpose.

14.
J Biotechnol ; 341: 1-20, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34534593

ABSTRACT

An increase in fish consumption, combined with a decrease in wild fish harvest, is driving the aquaculture industry at rapid pace. Today, farmed seafood accounts for about half of all global seafood demand for human consumption. As the aquaculture industry continues to grow, so does the market for aquafeed. Currently, some of the feed ingredients are coming from low-value forage fishes (fish meal) and terrestrial plants. The production of fish meal can't be increased as it would affect the sustainability and ecosystem of the ocean. Similarly, increasing the production of terrestrial plant-based feed leads to deforestation and increased freshwater use. Hence, alternative and environmentally sustainable sources of feed ingredients need to be developed. Microalgae biomasses represent potential feed source ingredients as the cell metabolites of these microorganisms contain a blend of essential amino acids, healthy triglycerides as fat, vitamins, and pigments. In addition to serving as bulk ingredient in aquafeed, their unique array of bioactive compounds can increase the survivability of farmed species, improve coloration and quality of fillet. Microalgae has the highest areal biomass productivities among photosynthetic organisms, including fodder crops, and thus has a high commercial potential. Also, microalgal production has a low water and arable-land footprint, making microalgal-based feed environmentally sustainable. This review paper will explore the potential of producing microalgae biomass as an ingredient of aquaculture feed.


Subject(s)
Microalgae , Animal Feed/analysis , Animals , Aquaculture , Ecosystem , Fishes , Humans
15.
J Anim Sci Biotechnol ; 12(1): 76, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34134776

ABSTRACT

There is an immediate need to identify alternative sources of high-nutrient feedstocks for domestic livestock production and poultry, not only to support growing food demands but also to produce microalgae-source functional foods with multiple health benefits. Various species of microalgae and cyanobacteria are used to supplement existing feedstocks. In this review, microalgae have been defined as a potential feedstock for domestic animals due to their abundance of proteins, carbohydrates, lipids, minerals, vitamins, and other high-value products. Additionally, the positive physiological effects on products of animals fed with microalgal biomass have been compiled and recommendations are listed to enhance the assimilation of biomolecules in ruminant and nonruminant animals, which possess differing digestive systems. Furthermore, the role of microalgae as prebiotics is also discussed. With regards to large scale cultivation of microalgae for use as feed, many economic trade-offs must be considered such as the selection of strains with desired nutritional properties, cultivation systems, and steps for downstream processing. These factors are highlighted with further investigations needed to reduce the overall costs of cultivation. Finally, this review outlines the pros and cons of utilizing microalgae as a supplementary feedstock for poultry and cattle, existing cultivation strategies, and the economics of large-scale microalgal production.

16.
Bioresour Technol ; 331: 125043, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33813163

ABSTRACT

The Arabian Peninsula's advantageous climate, availability of non-arable land, access to seawater and CO2-rich flue gas, make it an attractive location for microalgae biomass production. Despite these promising aspects, the region has seen very few studies into the commercial feasibility of algae-based value chains. This work aims to address this gap through a techno-economic feasibility study of algae biomass production costs, comparing different photobioreactor types, locations, and production scales. Flat panel and raceway pond cultivation systems were found to be the most economically attractive cultivation systems, with biomass production costs as low as 2.9 €·kg-1. Potential cost reductions of up to 42.5% and 25% could be accomplished with improvements in photosynthetic efficiencies and increased culture temperatures, respectively. As of such, efforts to source local thermo- and photo- tolerant strains could be the key to unlock the potential of the region for algae commercialization, linking into food, feed and nutraceutical industries.


Subject(s)
Microalgae , Biofuels , Biomass , Photobioreactors , Ponds , Seawater
17.
Biotechnol Bioeng ; 118(6): 2368-2379, 2021 06.
Article in English | MEDLINE | ID: mdl-33710627

ABSTRACT

The effect of light intensity and inoculum volume on the occurrence of photooxidation for Leptolyngbya sp. QUCCCM 56 was investigated, to facilitate the transition from small-scale laboratory experiments to large-scale outdoor cultivation. Indoor, the strain was capable of growing at light intensities of up to 5600 µmol photons/m2 /s, at inoculation densities as low as 0.1 g/L (10% inoculation volume vol/vol). Levels of chlorophyll and phycocyanin showed a significant decrease within the first 24 h, indicating some level of photooxidation, however, both were able to recover within 72 h. When cultivated under outdoor conditions in Qatar during summer, with average peak light intensities 1981 ± 41 µmol photons/m2 /s, the strain had difficulties growing. The culture recovered after an initial adaptation period, and clear morphological differences were observed, such as an increase in trichome length, as well as coiling of multiple trichomes in tightly packed strands. It was hypothesized that the morphological changes were induced by UV-radiation as an adaptation mechanism for increased self-shading. Furthermore, the presence of contaminating ciliates could have also affected the outdoor culture. Both UV and contaminants are generally not simulated under laboratory environments, causing a mismatch between indoor optimizations and outdoor realizations.


Subject(s)
Cyanobacteria/growth & development , Light , Oxidation-Reduction , Adaptation, Physiological , Biomass , Chlorophyll/analysis , Culture Techniques , Cyanobacteria/radiation effects , Phycocyanin/analysis , Ultraviolet Rays
18.
Toxics ; 9(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673174

ABSTRACT

In recent years, Qatar has witnessed exponential growth in the human population, urbanization, and increased anthropogenic activities, including agriculture. Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study's findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of -0.2-2.5 further indicated that the soil was up to 58% polluted. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a noncarcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10-4 and 2.06 × 10-4 for adults and children, respectively, proved carcinogenic to both age groups. The elements' carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar. Reducing the elements' bioavailability in soil and developing innovative remediation technologies is needed to limit potential risks to human health. Further studies on As, Cr, and Ni gastrointestinal bioaccessibilities are needed to fully understand the effects after long-term exposure and the cancer-causing potential of these elements over a lifetime.

19.
Mar Pollut Bull ; 164: 112085, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33549923

ABSTRACT

The Arabian Gulf is one of the most adversely affected marine environments worldwide, which results from combined pollution drivers including climate change, oil and gas activities, and coastal anthropogenic disturbances. Desalination activities are one of the major marine pollution drivers regionally and internationally. Arabian Gulf countries represent a hotspot of desalination activities as they are responsible for nearly 50% of the global desalination capacity. Building desalination plants, up-taking seawater, and discharging untreated brine back into the sea adversely affects the biodiversity of the marine ecosystems. The present review attempted to reveal the potential negative effects of desalination plants on the Gulf's marine environments. We emphasised different conventional and innovative assessment tools used to assess the health of marine environments and evaluate the damage exerted by desalination activity in the Gulf. Finally, we suggested effective management approaches to tackle the issue including the significance of national regulations and regional cooperation.


Subject(s)
Ecosystem , Environmental Monitoring , Climate Change , Environmental Pollution , Seawater
20.
Sci Total Environ ; 755(Pt 1): 142532, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33035988

ABSTRACT

This study investigated the feasibility of microalgal biomass production using waste nitrogen fertilizers (WNFs) generated by the Qatar Fertiliser Company (QAFCO). From the plant, three types of WNFs (WNF1, WNF2, and WNF3) were collected; WNF1 and WNF2 had high solubility (e.g., 1000 g/L) whereas WNF3 had low solubility (65 g/L). For a lower dosage (i.e., 100 mg N/L) of these WNFs, >98% of nitrogen was soluble in water for WNF1 and WNF2; however, 52 mg N/L was soluble for WNF3. Nitrogen content in these wastes was 44, 43, and 39% for WNF1, WNF2, and WNF3, respectively. As these WNFs were used as the sole nitrogen source to grow Tetraselmis sp., Picochlorum sp., and Synechococcus sp., Tetraselmis sp. could utilize all the three WNFs more efficiently than other two strains. The biomass yield of Tetraselmis sp. in a 100,000 L raceway pond was 0.58 g/L and 0.67 g/L for mixed WNFs (all WNF in equal ratio) and urea, respectively. The metabolite profiles of Tetraselmis sp. biomass grown using mixed WNFs were very similar to the biomass obtained from urea-added culture - suggesting that WNFs produced Tetraselmis sp. biomass could be used as animal feed ingredients. Life cycle impact assessment (LCIA) was conducted for six potential scenarios, using the data from the outdoor cultivation. The production of Tetraselmis sp. biomass in QAFCO premises using its WNFs, flue gas, and waste heat could not only eliminate the consequences of landfilling WNFs but also would improve the energy, cost, and environmental burdens of microalgal biomass production.


Subject(s)
Microalgae , Biomass , Fertilizers , Nitrogen , Qatar , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...