Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; : 174881, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047828

ABSTRACT

The ubiquitous and global ecological footprint arising from the rapidly increasing rates of plastic production, use, and release into the environment is an important modern environmental issue. Of increasing concern are the risks associated with at least 16,000 chemicals present in plastics, some of which are known to be toxic, and which may leach out both during use and once exposed to environmental conditions, leading to environmental and human exposure. In response, the United Nations member states agreed to establish an international legally binding instrument on plastic pollution, the global plastics treaty. The resolution acknowledges that the treaty should prevent plastic pollution and its related impacts, that effective prevention requires consideration of the transboundary nature of plastic production, use and pollution, and that the full life cycle of plastics must be addressed. As a group of scientific experts and members of the Scientists' Coalition for an Effective Plastics Treaty, we concur that there are six essential "pillars" necessary to truly reduce plastic pollution and allow for chemical detoxification across the full life cycle of plastics. These include a plastic chemical reduction and simplification, safe and sustainable design of plastic chemicals, incentives for change, holistic approaches for alternatives, just transition and equitable interventions, and centering human rights. There is a critical need for scientifically informed and globally harmonized information, transparency, and traceability criteria to protect the environment and public health. The right to a clean, healthy, and sustainable environment must be upheld, and thus it is crucial that scientists, industry, and policy makers work in concert to create a future free from hazardous plastic contamination.

2.
Sci Total Environ ; 651(Pt 2): 2420-2423, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30336431

ABSTRACT

Microplastic (MP) pollution continues to proliferate in freshwater, marine and terrestrial environments, but with their biotic implications remaining poorly understood. Biotic interactions such as predation can profoundly influence ecosystem structuring, stability and functioning. However, we currently lack quantitative understandings of how trophic interaction strengths and associated behaviours are influenced by MP pollution, and how transference of MPs between trophic levels relates to consumptive traits. We also lack understanding of key life-history effects of MPs, for example, reproductive strategies such as oviposition. The present study examines the predatory ability of non-biting midge larvae, Chaoborus flavicans, towards larvae of Culex pipiens mosquitoes when the latter are exposed to MPs, using a functional response (FR) approach. Transfer of MPs occurred from larval mosquitoes to larval midges via predation. Microplastics transfer was significantly positively related to predation rates. Predation by C. flavicans followed a Type II FR, with average maximum feeding rates of 6.2 mosquito larvae per hour. These and other FR parameters (attack rates and handling times) were not significantly influenced by the presence of MPs. Further, C. pipiens adults did not avoid ovipositing in habitats with high concentrations of MPs. We thus demonstrate that MPs can move readily through freshwater food webs via biotic processes such as predation, and that uptake correlates strongly with consumption rates. Further, as MPs do not deter adult mosquitoes from ovipositing, our experiments reveal high potential for MP exposure and transference through ecosystems.


Subject(s)
Diptera/physiology , Environmental Pollutants/adverse effects , Food Chain , Oviposition , Plastics/adverse effects , Animals , Culex/drug effects , Culex/growth & development , Culex/physiology , Diptera/drug effects , Diptera/growth & development , Larva/drug effects , Larva/growth & development , Larva/physiology , Oviposition/drug effects
3.
Sci Total Environ ; 651(Pt 1): 871-876, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30253369

ABSTRACT

Microplastics (MPs) continue to proliferate and pollute aquatic and terrestrial environments globally. The impacts of MP pollution on ecosystems and their functioning remain poorly quantified, with most research hitherto focusing on marine ecosystems. There is a paucity of information on the impacts of MPs in freshwater ecosystems, despite the broad range of pathways through which MPs can proliferate and the extensive range of species which actively ingest MPs in these systems. Of particular interest are organisms that bridge aquatic and terrestrial habitats. The present study thus examines the uptake, ontogenic transference and effect of different concentrations (0, 50, 100 and 200 MPs mL-1) and sizes (2 and 15 µm) of polystyrene MPs between aquatic and terrestrial life stages of Culex pipiens complex mosquitoes. Both 2 and 15 µm MPs transferred from the aquatic larval to terrestrial adult stage of Culex mosquitoes, and uptake correlated tightly with initial exposure concentration. However, neither concentration nor size of MPs significantly influenced mortality rates between the aquatic larval and terrestrial adult stage. There was also no impact of MPs on the weight of emerging mosquito adults. We thus demonstrate that MPs can be transferred ontogenically through organisms with complex life histories, presenting a potential pathway for dispersal of MPs into terrestrial environments. We also show that MPs exposure does not affect mortality rates between life stages of freshwater Culex populations. This suggests that MPs do not impact nutritional uptakes, with unhampered development to adulthood facilitating subsequent dispersal of MPs aerially and between freshwater and terrestrial habitats.


Subject(s)
Culex/physiology , Environmental Monitoring , Environmental Pollutants/analysis , Plastics/analysis , Animals , Body Weight
4.
Biol Lett ; 14(9)2018 09 19.
Article in English | MEDLINE | ID: mdl-30232097

ABSTRACT

Microplastics (MPs) are ubiquitous pollutants found in marine, freshwater and terrestrial ecosystems. With so many MPs in aquatic systems, it is inevitable that they will be ingested by aquatic organisms and be transferred up through the food chain. However, to date, no study has considered whether MPs can be transmitted by means of ontogenic transference, i.e. between life stages that use different habitats. Here, we determine whether fluorescent polystyrene beads could transfer between Culex mosquito life stages and, particularly, could move into the flying adult stage. We show for the first time that MPs can be transferred ontogenically from a feeding (larva) into a non-feeding (pupa) life stage and subsequently into the adult terrestrial life stage. However, transference is dependent on particle size, with smaller 2 µm MPs transferring readily into pupae and adult stages, while 15 µm MPs transferred at a significantly reduced rate. MPs appear to accumulate in the Malpighian tubule renal excretion system. The transfer of MPs to the adults represents a potential aerial pathway to contamination of new environments. Thus, any organism that feeds on terrestrial life phases of freshwater insects could be impacted by MPs found in aquatic ecosystems.


Subject(s)
Culex/growth & development , Life Cycle Stages , Polystyrenes , Animals , Culex/physiology , Environmental Pollutants , Malpighian Tubules , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...