Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 8: 727144, 2021.
Article in English | MEDLINE | ID: mdl-34977149

ABSTRACT

Introduction: Biological aging is associated with changes in the metabolic pathways. Leukocyte telomere length (LTL) is a predictive marker of biological aging; however, the underlying metabolic pathways remain largely unknown. The aim of this study was to investigate the metabolic alterations and identify the metabolic predictors of LTL in elite male soccer players. Methods: Levels of 837 blood metabolites and LTL were measured in 126 young elite male soccer players who tested negative for doping abuse at anti-doping laboratory in Italy. Multivariate analysis using orthogonal partial least squares (OPLS), univariate linear models and enrichment analyses were conducted to identify metabolites and metabolic pathways associated with LTL. Generalized linear model followed by receiver operating characteristic (ROC) analysis were conducted to identify top metabolites predictive of LTL. Results: Sixty-seven metabolites and seven metabolic pathways showed significant associations with LTL. Among enriched pathways, lysophospholipids, benzoate metabolites, and glycine/serine/threonine metabolites were elevated with longer LTL. Conversely, monoacylglycerols, sphingolipid metabolites, long chain fatty acids and polyunsaturated fatty acids were enriched with shorter telomeres. ROC analysis revealed eight metabolites that best predict LTL, including glutamine, N-acetylglutamine, xanthine, beta-sitosterol, N2-acetyllysine, stearoyl-arachidonoyl-glycerol (18:0/20:4), N-acetylserine and 3-7-dimethylurate with AUC of 0.75 (0.64-0.87, p < 0.0001). Conclusion: This study characterized the metabolic activity in relation to telomere length in elite soccer players. Investigating the functional relevance of these associations could provide a better understanding of exercise physiology and pathophysiology of elite athletes.

2.
Front Genet ; 11: 595, 2020.
Article in English | MEDLINE | ID: mdl-32612638

ABSTRACT

BACKGROUND: The genetic predisposition to elite athletic performance has been a controversial subject due to the underpowered studies and the small effect size of identified genetic variants. The aims of this study were to investigate the association of common single-nucleotide polymorphisms (SNPs) with endurance athlete status in a large cohort of elite European athletes using GWAS approach, followed by replication studies in Russian and Japanese elite athletes and functional validation using metabolomics analysis. RESULTS: The association of 476,728 SNPs of Illumina DrugCore Gene chip and endurance athlete status was investigated in 796 European international-level athletes (645 males, 151 females) by comparing allelic frequencies between athletes specialized in sports with high (n = 662) and low/moderate (n = 134) aerobic component. Replication of results was performed by comparing the frequencies of the most significant SNPs between 242 and 168 elite Russian high and low/moderate aerobic athletes, respectively, and between 60 elite Japanese endurance athletes and 406 controls. A meta-analysis has identified rs1052373 (GG homozygotes) in Myosin Binding Protein (MYBPC3; implicated in cardiac hypertrophic myopathy) gene to be associated with endurance athlete status (P = 1.43 × 10-8, odd ratio 2.2). Homozygotes carriers of rs1052373 G allele in Russian athletes had significantly greater VO2 max than carriers of the AA + AG (P = 0.005). Subsequent metabolomics analysis revealed several amino acids and lipids associated with rs1052373 G allele (1.82 × 10-05) including the testosterone precursor androstenediol (3beta,17beta) disulfate. CONCLUSIONS: This is the first report of genome-wide significant SNP and related metabolites associated with elite athlete status. Further investigations of the functional relevance of the identified SNPs and metabolites in relation to enhanced athletic performance are warranted.

4.
Eur J Appl Physiol ; 120(3): 665-673, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31970519

ABSTRACT

PURPOSE: Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replacement, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three previous studies. METHODS: The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO2max in 46 male Russian endurance athletes was determined using gas analysis system. RESULTS: The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58-2.45; P = 1.7 × 10-9). Furthermore, the HFE G allele was associated with high V̇O2max in male athletes [CC: 61.8 (6.1), CG/GG: 66.3 (7.8) ml/min/kg; P = 0.036]. CONCLUSIONS: We have shown that the HFE H63D polymorphism is strongly associated with elite endurance athlete status, regardless ethnicities and aerobic capacity in Russian athletes.


Subject(s)
Hemochromatosis Protein/genetics , Physical Endurance/genetics , Athletes , Case-Control Studies , Humans , Polymorphism, Single Nucleotide
5.
Sci Rep ; 9(1): 19889, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882771

ABSTRACT

Genetic research of elite athletic performance has been hindered by the complex phenotype and the relatively small effect size of the identified genetic variants. The aims of this study were to identify genetic predisposition to elite athletic performance by investigating genetically-influenced metabolites that discriminate elite athletes from non-elite athletes and to identify those associated with endurance sports. By conducting a genome wide association study with high-resolution metabolomics profiling in 490 elite athletes, common variant metabolic quantitative trait loci (mQTLs) were identified and compared with previously identified mQTLs in non-elite athletes. Among the identified mQTLs, those associated with endurance metabolites were determined. Two novel genetic loci in FOLH1 and VNN1 are reported in association with N-acetyl-aspartyl-glutamate and Linoleoyl ethanolamide, respectively. When focusing on endurance metabolites, one novel mQTL linking androstenediol (3alpha, 17alpha) monosulfate and SULT2A1 was identified. Potential interactions between the novel identified mQTLs and exercise are highlighted. This is the first report of common variant mQTLs linked to elite athletic performance and endurance sports with potential applications in biomarker discovery in elite athletic candidates, non-conventional anti-doping analytical approaches and therapeutic strategies.


Subject(s)
Athletes , Genotype , Physical Endurance/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Female , Genome-Wide Association Study , Humans , Male
6.
Scand J Med Sci Sports ; 29(7): 933-943, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30929282

ABSTRACT

Intensive exercise of elite athletes can lead to physiological alterations in the cardiovascular system in response to increased stroke volume and blood pressure, known collectively as cardiovascular demand (CD). This study aimed to compare metabolic differences in elite athletes with high vs low/moderate CD and to reveal their underlying metabolic pathways as potential biomarker signatures for assessing health, performance, and recovery of elite athletes. Metabolic profiling of serum samples from 495 elite athletes from different sport disciplines (118 high CD and 377 low/moderate CD athletes) was conducted using non-targeted metabolomics-based mass spectroscopy combined with ultra-high-performance liquid chromatography. Results show that DAGs containing arachidonic were enriched in high CD together with branched-chain amino acids, plasminogens, phosphatidylcholines, and phosphatidylethanolamines, potentially indicating increased risk of cardiovascular disease in the high CD group. Gamma-glutamyl amino acids and glutathione metabolism were increased in low/moderate CD group, suggesting more efficient oxidative stress scavenging mechanisms than the high CD group. This first most comprehensive metabolic profiling of elite athletes provides an evidence that athletes with different CD show a unique metabolic signature that reflects energy generation and oxidative stress and potentially places the high CD group at a higher risk of cardiovascular disease. Further studies are warranted for confirmation and validation of findings in other sport groups in light of potential confounders related to limited available information about participants.


Subject(s)
Athletes , Cardiovascular System , Metabolomics , Sports/physiology , Chromatography, High Pressure Liquid , Female , Humans , Male , Oxidative Stress , Oxygen Consumption , Sports/classification , Tandem Mass Spectrometry
7.
J Int Soc Sports Nutr ; 15(1): 48, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30261929

ABSTRACT

BACKGROUND: Supplements are widely used among elite athletes to maintain health and improve performance. Despite multiple studies investigating use of dietary supplements by athletes, a comprehensive profiling of serum supplement metabolites in elite athletes is still lacking. This study aims to analyze the presence of various xenobiotics in serum samples from elite athletes of different sports, focusing on metabolites that potentially originate from nutritional supplements. METHODS: Profiling of xenobiotics in serum samples from 478 elite athletes from different sports (football, athletics, cycling, rugby, swimming, boxing and rowing) was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was performed using orthogonal partial least squares discriminant analysis. Differences in metabolic levels among different sport groups were identified by univariate linear models. RESULTS: Out of the 102 detected xenobiotics, 21 were significantly different among sport groups including metabolites that potentially prolong exercise tolerance (caffeic acid), carry a nootropic effect (2-pyrrolidinone), exert a potent anti-oxidant effect (eugenol, ferulic acid 4 sulfate, thioproline, retinol), or originate from drugs for different types of injuries (ectoine, quinate). Using Gaussian graphical modelling, a metabolic network that links various sport group-associated xenobiotics was constructed to further understand their metabolic pathways. CONCLUSIONS: This pilot data provides evidence that athletes from different sports exhibit a distinct xenobiotic profile that may reflect their drug/supplement use, diet and exposure to various chemicals. Because of limitation in the study design, replication studies are warranted to confirm results in independent data sets, aiming ultimately for better assessment of dietary supplement use by athletes.


Subject(s)
Dietary Supplements , Metabolomics , Xenobiotics/blood , Athletes , Chromatography, High Pressure Liquid , Female , Humans , Male , Sports , Tandem Mass Spectrometry
8.
Sports Med Open ; 4(1): 2, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29305667

ABSTRACT

BACKGROUND: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. METHODS: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. RESULTS: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. CONCLUSIONS: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes' elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications.

9.
Redox Biol ; 12: 483-490, 2017 08.
Article in English | MEDLINE | ID: mdl-28334683

ABSTRACT

OBJECTIVE: Obesity-associated impaired fat accumulation in the visceral adipose tissue can lead to ectopic fat deposition and increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). This study investigated whether impaired adipogenesis of omental (OM) adipose tissues and elevated 4-hydroxynonenal (4-HNE) accumulation contribute to this process, and if combined metformin and insulin treatment in T2DM patients could rescue this phenotype. METHODS: OM adipose tissues were obtained from forty clinically well characterized obese individuals during weight reduction surgery. Levels of 4-HNE protein adducts, adipocyte size and number of macrophages were determined within these tissues by immunohistochemistry. Adipogenic capacity and gene expression profiles were assessed in preadipocytes derived from these tissues in relation to insulin resistance and in response to 4-HNE, metformin or combined metformin and insulin treatment. RESULTS: Preadipocytes isolated from insulin resistant (IR) and T2DM individuals exhibited lower adipogenesis, marked by upregulation of anti-adipogenic genes, compared to preadipocytes derived from insulin sensitive (IS) individuals. Impaired adipogenesis was also associated with increased 4-HNE levels, smaller adipocytes and greater macrophage presence in the adipose tissues. Within the T2DM group, preadipocytes from combined metformin and insulin treated subset showed better in vitro adipogenesis compared to metformin alone, which was associated with less presence of macrophages and 4-HNE in the adipose tissues. Treatment of preadipocytes in vitro with 4-HNE reduced their adipogenesis and increased proliferation, even in the presence of metformin, which was partially rescued by the presence of insulin. CONCLUSION: This study reveals involvement of 4-HNE in the impaired OM adipogenesis-associated with insulin resistance and T2DM and provides a proof of concept that this impairment can be reversed by the synergistic action of insulin and metformin. Further studies are needed to evaluate involvement of 4-HNE in metabolically impaired abdominal adipogenesis and to confirm benefits of combined metformin-insulin therapy in T2DM patients.


Subject(s)
Adipogenesis/drug effects , Aldehydes/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin/pharmacology , Metformin/pharmacology , Obesity/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adult , Bariatric Surgery , Cells, Cultured , Diabetes Mellitus, Type 2/surgery , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Obesity/surgery
10.
Free Radic Biol Med ; 104: 129-137, 2017 03.
Article in English | MEDLINE | ID: mdl-28088621

ABSTRACT

OBJECTIVE: Increased adipose production of 4-hydroxynonenal (4-HNE), a bioreactive aldehyde, directly correlates with obesity and insulin resistance. The aim of this study was to elucidate the impact of 4-HNE in mediating adipocyte differentiation and function in two metabolically distinct obese groups; the insulin sensitive (IS) and the insulin resistant (IR). METHODS: Subcutaneous (SC) adipose tissues were obtained from eighteen clinically well characterized obese premenopausal women undergoing weight reduction surgery. Cellular distribution of 4-HNE in the form of protein adducts was determined by immunohistochemistry in addition to its effect on oxidative stress, cell growth, adipogenic capacity and insulin signaling in preadipocytes derived from the IS and IR participants. RESULTS: 4-HNE was detected in the SC adipose tissue in different cell types with the highest level detected in adipocytes and blood vessels. Short and long-term in vitro treatment of SC preadipocytes with 4-HNE caused inhibition of their growth and increased production of reactive oxygen species (ROS) and antioxidant enzymes. Repeated 4-HNE treatment led to a greater reduction in the adipogenic capacity of preadipocytes from IS subjects compared to IR and caused dephosphorylation of IRS-1 and p70S6K while activating GSK3α/ß and BAD, triggering an IR phenotype. CONCLUSION: These data suggest that 4-HNE-induced oxidative stress plays a role in the regulation of preadipocyte growth, differentiation and insulin signaling and may therefore contribute to adipose tissue metabolic dysfunction associated with insulin resistance.


Subject(s)
Adipogenesis/drug effects , Aldehydes/administration & dosage , Obesity/metabolism , Oxidative Stress/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/pathology , Adult , Aldehydes/metabolism , Animals , Blood Vessels/drug effects , Blood Vessels/metabolism , Blood Vessels/pathology , Cell Proliferation/drug effects , Female , Humans , Insulin Resistance/genetics , Mice , Obesity/drug therapy , Obesity/pathology , Reactive Oxygen Species/metabolism
11.
Diabetologia ; 59(11): 2406-2416, 2016 11.
Article in English | MEDLINE | ID: mdl-27342408

ABSTRACT

AIMS/HYPOTHESIS: A subset of obese individuals remains insulin sensitive by mechanisms as yet unclear. The hypothesis that maintenance of normal subcutaneous (SC) adipogenesis accounts, at least partially, for this protective phenotype and whether it can be abrogated by chronic exposure to IL-6 was investigated. METHODS: Adipose tissue biopsies were collected from insulin-sensitive (IS) and insulin-resistant (IR) individuals undergoing weight-reduction surgery. Adipocyte size, pre-adipocyte proportion of stromal vascular fraction (SVF)-derived cells, adipogenic capacity and gene expression profiles of isolated pre-adipocytes were determined, along with local in vitro IL-6 secretion. Adipogenic capacity was further assessed in response to exogenous IL-6 application. RESULTS: Despite being equally obese, IR individuals had significantly lower plasma leptin and adiponectin levels and higher IL-6 levels compared with age-matched IS counterparts. Elevated systemic IL-6 in IR individuals was associated with hyperplasia of adipose tissue-derived SVF cells, despite higher frequency of hypertrophied adipocytes. SC pre-adipocytes from these tissues exhibited lower adipogenic capacity accompanied by downregulation of PPARγ (also known as PPARG) and CEBPα (also known as CEBPA) and upregulation of GATA3 expression. Impaired adipogenesis in IR individuals was further associated with increased adipose secretion of IL-6. Treatment of IS-derived SC pre-adipocytes with IL-6 reduced their adipogenic capacity to levels of the IR group. CONCLUSIONS/INTERPRETATION: Obesity-associated insulin resistance is marked by impaired SC adipogenesis, mediated, at least in a subset of individuals, by elevated local levels of IL-6. Understanding the molecular mechanisms underlying reduced adipogenic capacity in IR individuals could help target appropriate therapeutic strategies aimed at those at greatest risk of insulin resistance and type 2 diabetes mellitus.


Subject(s)
Adipogenesis/physiology , Insulin Resistance/physiology , Interleukin-6/metabolism , Obesity/metabolism , Adipocytes/metabolism , Adipogenesis/genetics , Adiponectin/genetics , Adiponectin/metabolism , Adult , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Humans , In Vitro Techniques , Insulin Resistance/genetics , Interleukin-6/genetics , Male , Middle Aged , Obesity/genetics , PPAR gamma/genetics , PPAR gamma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...