Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 15(1): 192, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001332

ABSTRACT

Doped magnetite (SnxFe3-2/3xO4) nanoparticles (NPs) (12-50 nm) with different amount of Sn2+ ions (x) were synthesized using co-precipitation method. Sn2+ doping reduces the anticipated oxidation of Fe3O4 NPs to maghemite (γ-Fe2O3), making them attractive in several magnetic applications. Detailed characterizations during heating-cooling cycles revealed the possibility of tuning the unusual observed magnetization dipping temperature/amplitude, irreversibility, and Curie point of these NPs. We attribute this dip to the chemical reduction of γ-Fe2O3 at the NPs surfaces. Along with an increase in the dipping temperature, we found that doping with Sn2+ reduces the dipping amplitude, until it approximately disappears when x = 0.150. Based on the core-shell structure of these NPs, a phenomenological expression that combines both modified Bloch law (M = M0[1 - γ(T/TC)]ß) and a modified Curie-Weiss law (M = - α[1/(T - TC)δ]) is developed in order to explain the observed M-T behavior at different applied external magnetic fields and for different Sn2+ concentrations. By applying high enough magnetic field, the value of the parameters γ and δ ≈ 1 which are the same in modified Bloch and Curie-Weiss laws. They do not change with the magnetic field and depend only on the material structure and size. The power ß for high magnetic field was 2.6 which is as expected for this size of nanoparticles with the core dominated magnetization. However, the ß value fluctuates between 3 and 10 for small magnetic fields indicating an extra magnetic contribution from the shell structure presented by Curie-Weiss term. The parameter (α) has a very small value and it turns to negative values for high magnetic fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...