Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chemosphere ; 338: 139398, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37406939

ABSTRACT

A newly developed waste-to-energy system using a biomass combined energy system designed and taken into account for electricity generation, cooling, and freshwater production has been investigated and modeled in this project. The investigated system incorporates several different cycles, such as a biomass waste integrated gasifier-gas turbine cycle, a high-temperature fuel cell, a Rankine cycle, an absorption refrigeration system, and a flash distillation system for seawater desalination. The EES software is employed to perform a basic analysis of the system. They are then transferred to MATLAB software to optimize and evaluate the impact of operational factors. Artificial intelligence is employed to evaluate and model the EES software's analysis output for this purpose. By enhancing the flow rate of fuel from 4 to 6.5 kg/s, the cost rate and energy efficiency are reduced by 51% and increased by 6.5%, respectively. Furthermore, the maximum increment in exergetic efficiency takes place whenever the inlet temperature of the gas turbine rises. According to an analysis of three types of biomasses, Solid Waste possesses the maximum efficiency rate, work output, and expense. Rice Husk, in contrast, has the minimum efficiency, work output, and expense. Additionally, with the change in fuel discharge and gas turbine inlet temperature, the system behavior for all three types of biomasses will be nearly identical. The Pareto front optimization findings demonstrate that the best mode for system performance is an output power of 53,512 kW, a cost of 0.643 dollars per second, and a first law efficiency of 42%. This optimal value occurs for fuel discharge of 5.125 and the maximum inlet temperature for a gas turbine. The rates of water desalination and cooling in this condition are 18.818 kg/s and 2356 kW, respectively.


Subject(s)
Artificial Intelligence , Water , Biomass , Temperature , Electricity
2.
Nanomaterials (Basel) ; 12(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35889605

ABSTRACT

Squeezing flow is a flow where the material is squeezed out or disfigured within two parallel plates. Such flow is beneficial in various fields, for instance, in welding engineering and rheometry. The current study investigates the squeezing flow of a hybrid nanofluid (propylene glycol-water mixture combined with paraffin wax-sand) between two parallel plates with activation energy and entropy generation. The governing equations are converted into ordinary differential equations using appropriate similarity transformations. The shooting strategy (combined with Runge-Kutta fourth order method) is applied to solve these transformed equations. The results of the conducted parametric study are explained and revealed in graphs. This study uses a statistical tool (correlation coefficient) to illustrate the impact of the relevant parameters on the engineering parameters of interest, such as the surface friction factor at both plates. This study concludes that the squeezing number intensifies the velocity profiles, and the rotating parameter decreases the fluid velocity. In addition, the magnetic field, rotation parameter, and nanoparticle volumetric parameter have a strong negative relationship with the friction factor at the lower plate. Furthermore, heat source has a strong negative relationship with heat transfer rate near the lower plate, and a strong positive correlation with the same phenomena near the upper plate. In conclusion, the current study reveals that the entropy generation is increased with the Brinkman number and reduced with the squeezing parameter. Moreover, the results of the current study verify and show a decent agreement with the data from earlier published research outcomes.

3.
Sci Rep ; 12(1): 10060, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35710647

ABSTRACT

The heat transfer characteristics of copper/water nanofluid flow over a bi-directional stretched film are theoretically studied. The used mathematical model accounts for nanofluid effective dynamic viscosity and thermal conductivity. The model of the current study utilizes the modified Buongiorno model to scrutinize the effect of haphazard motion, nanoparticles' thermo-migration, and effective nanofluid properties. 3D flow is driven by having the nanofluid film elongation in two directions. The thermal analysis of the problem considers the nonlinear internal heat source and Newton heating conditions. In modeling the problem, the Prandtl boundary layer approximations are employed. Moreover, the nonlinear problem set of governing equations for investigating the transport of water conveying copper nanoparticles was non-dimensionalized before being treated numerically. The current parametric study investigates the impact of governing parameters on nanoparticles velocities, temperature, and concentration distributions. The presence of copper nanoparticles leads to a higher nanofluid temperature upon heating. The temperature enhances with the nanoparticles Brownian movement and thermo-migration aspects. Furthermore, involving a heat source phenomenon augments the magnitude of the heat transfer rate. Moreover, the velocity ratio factor exhibits decreasing behavior for x-component velocity and increasing behavior for y-component velocity. In conclusion, the study results proved that for larger values of Nb and Nt the temperature is higher. In addition, it is clear from the investigations that the Lewis number and Brownian motion factor decline the nanoparticle concentration field.

4.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35564102

ABSTRACT

This work investigates mixed convection in a lid-driven cavity. This cavity is filled with nanofluid and subjected to a magnetic field. The concentric ovoid cavity orientation (γ), 0−90°, and undulation number (N), 1−4, are considered. The Richardson number (Ri) varies between 1 and 100. The nanofluid volume fraction (φ) ranges between 0 and 0.08%. The effect of the parameters on flow, thermal transport, and entropy generation is illustrated by the stream function, isotherms, and isentropic contours. Heat transfer is augmented and the Nusselt number rises with higher Ri, γ, N, and φ. The simulations show that the heat transfer is responsible for entropy generation, while frictional and magnetic effects are marginal.

5.
Sci Rep ; 12(1): 4256, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35277555

ABSTRACT

This study investigates heat transfer characteristics and three-dimensional flow of non-Newtonian Casson nanofluid over a linearly stretching flat surface in the rotating frame of a reference. The current model includes the Buongiorno nanofluid model comprises nanoparticles' haphazard motion and thermo-migration. It also considered mechanisms for viscous heating and constant heat flux at the boundary. The nonlinear partial differential system modeling includes the non-Newtonian Casson fluid model and the boundary layer approximation. The system governing equations were nondimensionalized and numerically solved. A parametric study was conducted to analyze the significance of dimensionless parameters on velocities, the concentration, temperatures, Nusselt number, friction factors, and Sherwood number. The study reveals that the Casson nanoliquid temperature enhanced significantly due to the mechanisms of haphazard motion and thermo-migration. The momentum layer thickness of nano Casson fluid reduced due to the rotation phenomenon while the thermal layer structure amended notably. In the absence of rotation, there is no transverse velocity. The thermal layer structure is enhanced owing to the viscous heating process. The intense haphazard motion and thermo-migration mechanisms lead to maximum heat transfer rate at the plate. In addition, results show that the Coriolis force strength elevation shows similar axial and transverse velocities behavior. In addition, the nanoparticle concentration is observed higher due to the rotation aspect and Casson fluid parameter. Furthermore, the Casson fluid factor decreases with velocities, but the trend is the opposite for the high Casson fluid factor. The thermal and solute layer thickness growth is due to the nanoparticles' thermo-diffusion. In conclusion, the larger rotation factor increases the friction factors. The maximum plate heat transfer rate is when higher Nb and Nt are higher.

7.
Sci Rep ; 11(1): 22635, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34811402

ABSTRACT

MHD nanoliquid convective flow in an odd-shaped cavity filled with a multi-walled carbon nanotube-iron (II, III) oxide (MWCNT-Fe3O4) hybrid nanofluid is reported. The side walls are adiabatic, and the internal and external borders of the cavity are isothermally kept at high and low temperatures of Th and Tc, respectively. The governing equations obtained with the Boussinesq approximation are solved using Galerkin Finite Element Method (GFEM). Impact of Darcy number (Da), Hartmann number (Ha), Rayleigh number (Ra), solid volume fraction (ϕ), and Heated-wall length effect are presented. Outputs are illustrated in forms of streamlines, isotherms, and Nusselt number. The impact of multiple parameters namely Rayleigh number, Darcy number, on entropy generation rate was analyzed and discussed in post-processing under laminar and turbulent flow regimes.

8.
Sci Rep ; 11(1): 20669, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34667189

ABSTRACT

In this article, the three-dimensional (3D) flow and heat transport of viscous dissipating Cu-H2O nanoliquid over an elongated plate in a rotating frame of reference is studied by considering the modified Buongiorno model. The mechanisms of haphazard motion and thermo-migration of nanoparticles along with effective nanoliquid properties are comprised in the modified Buongiorno model (MBM). The Rosseland radiative heat flux and prescribed heat flux at the boundary are accounted. The governing nonlinear problem subjected to Prandtl's boundary layer approximation is solved numerically. The consequence of dimensionless parameters on the velocities, temperature, and nanoparticles volume fraction profiles is analyzed via graphical representations. The temperature of the base liquid is improved significantly owing to the existence of copper nanoparticles in it. The phenomenon of rotation improves the structure of the thermal boundary layer, while, the momentum layer thickness gets reduced. The thermal layer structure gets enhanced due to the Brownian movement and thermo-migration of nanoparticles. Moreover, it is shown that temperature enhances owing to the presence of thermal radiation. In addition, it is revealed that the haphazard motion of nanoparticles decays the nanoparticle volume fraction layer thickness. Also, the skin friction coefficients found to have a similar trend for larger values of rotation parameter. Furthermore, the results of the single-phase nanoliquid model are limiting the case of this study.

9.
Sci Rep ; 11(1): 16494, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34389749

ABSTRACT

In this work, the finite element method is employed to simulate heat transfer and irreversibilities in a mixed convection two-phase flow through a wavy enclosure filled with water-alumina nanoliquid and contains a rotating solid cylinder in the presence of a uniform magnetic field. Impact of the variations of undulations number (0 ≤ N ≤ 5), Ra (103 ≤ Ra ≤ 106), Ha (0 ≤ Ha ≤ 100), and angular rotational velocity (- 500 ≤ Ω ≤ 500) were presented. Isotherms distribution, streamlines and isentropic lines are displayed. The governing equations are verified by using the Galerkin Finite Element Method (GFEM). The Nusselt numbers are calculated and displayed graphically for several parametric studies. The computational calculations were carried out using Buongiorno's non-homogeneous model. To illustrate the studied problem, a thorough discussion of the findings was conducted. The results show the enhacement of the maximum value of the flow function and the heat transfer process by increasing the value of Rayleigh number. Furthermore the irreversibility is primarily governed by the heat transfer component and the increment of the waviness of the active surfaces or the cylinder rotational velocity or hartmann number will suppress the fluid motion and hinders the heat transfer process.

11.
Environ Sci Pollut Res Int ; 28(35): 48628-48636, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33913110

ABSTRACT

In this work, a new attempt was made to study the behavior of the conventional solar still (CSS) by adding a black-painted copper plate and phosphate pellets. Therefore, the performance of the three solar stills has been studied and compared. The first is the CSS, and the second is the modified solar still (MSS). The MSS performance was tested using black-coated copper plate (measuring 49 × 49 cm and 0.2 cm thick) with and without phosphate pellets and compared to the CSS in the similar climatic conditions. The results showed that the combination of black coated copper plate and the inclusion of phosphate pellets improved the evaporation rate and daily productivity. During the experiments, yields using black coated copper plate without and with phosphate pellets were 14.96% and 29.53% greater than the CSS. The effectiveness of the CSS, MSS with copper metal plate (MSS-CP), and MSS with copper metal plate with phosphate pellets (MSS-CP and PP) are around 30.23, 35.3, and 41.44%, respectively.


Subject(s)
Copper , Phosphates , Sunlight
12.
Nanomaterials (Basel) ; 9(10)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627380

ABSTRACT

In this study, the effects of adding Sn nanopowder (particle size < 150 nm) to three solder pastes SAC3-X(H)F3+, SCAN-Ge071-XF3+, and water washable WW50-SAC3 are evaluated regarding microstructure, morphology, joint strength, and electrical resistance. The nanopowder was added at a rate of 10% by weight and then mechanically mixed until homogenous solder paste was obtained. The results showed that the addition of Sn nanoparticles resulted in homogenous bond formation for SAC-3 and SCAN, while voids and bubbles formation slightly increased within the joint interface for the water washable solder paste. The SCAN + Sn nano reinforced solder paste showed increased variation of joint strength from 12.6 to 39.9 N, while the water washable + Sn nanopowder reinforced solder paste showed less variability in joint strength from 17.3 to 33.9 N. Both sets of solder paste with and without Sn nano reinforced solder paste showed a reliable quality joint under mechanical shock testing after six shocks in six milliseconds with an 87.1 ms pulse duration. The results showed that Sn nanoparticles resulted in a small resistance change, while RDC values (in mΩ) slightly decreased for SAC and increased for SCAN and further increases for water washable solder paste.

13.
Entropy (Basel) ; 21(2)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-33266819

ABSTRACT

Computational Fluid Dynamics (CFD) is utilized to study entropy generation for the rarefied steady state laminar 2-D flow of air-Al2O3 nanofluid in a square cavity equipped with two solid fins at the hot wall. Such flows are of great importance in industrial applications, such as the cooling of electronic equipment and nuclear reactors. In this current study, effects of the Knudsen number (Kn), Rayleigh number (Ra) and the nano solid particle's volume fraction ( ϕ ) on entropy generation were investigated. The values of the parameters considered in this work were as follows: 0 ≤ K n ≤ 0.1 , 10 3 ≤ R a ≤ 10 6 ,   0 ≤ ϕ ≤ 0.2 . The length of the fins (LF) was considered to be fixed and equal to 0.5 m, whereas the location of the fins with respect to the lower wall (HF) was set to 0.25 and 0.75 m. Simulations demonstrated that there was an inverse direct effect of Kn on the entropy generation. Moreover, it was found that when Ra was less than 104, the entropy generation, due to the flow, increased as ϕ increases. In addition, the entropy generation due to the flow will decrease at Ra greater than 104 as ϕ increases. Moreover, the entropy generation due to heat will increase as both the ϕ and Ra increase. In addition, a correlation model of the total entropy generation as a function of all of the investigated parameters in this study was proposed. Finally, an optimization technique was adapted to find out the conditions at which the total entropy generation was minimized.

14.
Entropy (Basel) ; 21(5)2019 May 09.
Article in English | MEDLINE | ID: mdl-33267194

ABSTRACT

Massive improvements in the thermophysical properties of nanofluids over conventional fluids have led to the rapid evolution of using multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in the field of heat transfer. In this study, the heat transfer and entropy generation abilities of MWCNTs/GNPs hybrid nanofluids were explored. Experiments on forced convective flow through a brass microtube with 300 µm inner diameter and 0.27 m in length were performed under uniform heat flux. MWCNTs/GNPs hybrid nanofluids were developed by adding 0.035 wt.% GNPs to MWCNTs water-based nanofluids with mass fractions of 0.075-0.125 wt.%. The range of the Reynolds number in this experiment was maintained at Re = 200-500. Results showed that the conventional approach for predicting the heat transfer coefficient was applicable for microtubes. The heat transfer coefficient increased markedly with the use of MWCNTs and MWCNTs/GNPs nanofluids, with increased pressure dropping by 12.4%. Results further showed a reduction by 37.5% in the total entropy generation rate in microtubes for hybrid nanofluids. Overall, MWCNTs/GNPs hybrid nanofluids can be used as alternative fluids in cooling systems for thermal applications.

15.
Springerplus ; 5: 529, 2016.
Article in English | MEDLINE | ID: mdl-27186493

ABSTRACT

A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.

SELECTION OF CITATIONS
SEARCH DETAIL
...