Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932087

ABSTRACT

Fouling and biofouling remain significant challenges in seawater desalination plants. One practical approach to address these issues is to develop anti-biofouling membranes. Therefore, novel hybrid zinc phthalocyanine/polyvinylidene fluoride-co-hexafluoropropylene (Zn(4-PPOx)4Pc/PVDF-HFP) membranes were prepared by electrospinning to evaluate their properties against biofouling. The hybrid nanofiber membrane was characterized by atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle measurements. The theoretical calculations of PVDF-HFP, Zn(4-PPOx)4Pc), and Zn(4-PPOx)4Pc/PVDF-HFP nanofibers were performed using a hybrid functional RB3LYP and the 6-31 G (d,p) basis set, employing Gaussian 09. DFT calculations illustrated that the calculated physical and electronic parameters ensured the feasibility of the interaction of PVDF-HFP with Zn(4-PPOx)4Pc via a halogen-hydrogen bond, resulting in a highly stable and remarkably reactive structure. Moreover, molecular electrostatic potential (MEP) maps were drawn to identify the reactive regions of the Zn(4-PPOx)4Pc and PVDF-HFP/Zn(4-PPOx)4Pc nanofibers. Molecular docking analysis revealed that Zn(4-PPOx)4Pc has highest binding affinity (-8.56 kcal/mol) with protein from S. aureus (1N67) mainly with ten amino acids (ASP405, LYS374, GLU446, ASN406, ALA441, TYR372, LYS371, TYR448, LYS374, and ALA442). These findings highlight the promising potential of Zn(4-PPOx) 4Pc/PVDF-HFP nanocomposite membranes in improving the efficiency of water desalination by reducing biofouling and providing antibacterial properties.

2.
Saudi Dent J ; 36(2): 374-380, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38419981

ABSTRACT

Aim: This study aimed to assess oral suction devices in declining microbial airborne contamination level and particulate matter. Materials and methods: This open-label randomized clinical trial was conducted in an educational hospital with 50 participants above 18 years of age, who had scheduled an appointment at a dental hygienist clinic for scaling procedure. Particulate matter and microbial airborne contamination levels were taken at the beginning for 15 min and during of scaling procedure. Participants were randomized to five groups: low suction, high & low suction, intraoral suction (IOS), extra-oral suction (EOS) & low suction, and IOS & EOS. Repeated measured ANOVA analysis was carried out using STATA version 13. Results: Participants had aged 34.4 ± 8.1 years and the average simplified oral hygiene index was 3.5 ± 1.2. Microbial airborne contamination level for each intervention group was different to baseline; low suction, intraoral suction, high & low suction, EOS & low suction, and EOS and intraoral suction were 1089 ± 610, 296.3 ± 321.2, 43.8 ± 52.1, 17.3 ± 7.3 and 14.3 ± 3.9, respectively [P value < 0.05]. Particulate matter shows evidence of no significant difference among oral suctions [P value > 0.05]. Conclusion: Low or intraoral suction was not enough to reduce microbial airborne contamination for better infection control, practitioners highly recommended to use combination of suction devices. Clinical relevance: Using extra-oral with intra-oral suction, or extra-oral suction with low section, or high & low suction are potentially better in microbial airborne contamination reduction compared with low or intraoral suction only. Trial registration: Clinicaltrials.gov (NCT05848245) on April 14, 2023.

3.
Appl Microbiol Biotechnol ; 106(17): 5385-5397, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35930037

ABSTRACT

As important chemical raw materials and potential nutritional supplements, microbial lipids play an important role in ensuring economic development, food security, and energy security. Compared with non-natural hosts, oleaginous yeasts exhibit obvious advantages in lipid yield and productivity and have great potential to be genetically engineered into an oil cell factory. The main bottleneck in the current oleaginous yeasts engineering is the lack of genetic manipulation tools. Fortunately, the rapid development of synthetic biology has provided numerous new approaches, resources, and ideas for the field. Most importantly, gene editing technology mediated by CRISPR/Cas systems has been successfully applied to some oleaginous yeasts, almost completely rewriting the development pattern of genetic manipulation technology applicable. This paper reviews recent progress in genetic technology with regard to oleaginous yeasts, with a special focus on transformation methods and genome editing tools, discussing the effects of some important genetic parts. KEY POINTS: •Contribution of microbiotechnology in food safety and biofuel by oleaginous yeasts. •Advancement of genetic manipulation and transformation for oleaginous yeasts.


Subject(s)
Industrial Development , Yeasts , Biofuels , Gene Editing , Genetic Engineering
4.
Front Bioeng Biotechnol ; 9: 661694, 2021.
Article in English | MEDLINE | ID: mdl-34164382

ABSTRACT

Short- and medium-chain volatile esters with flavors and fruity fragrances, such as ethyl acetate, butyl acetate, and butyl butyrate, are usually value-added in brewing, food, and pharmacy. The esters can be naturally produced by some microorganisms. As ester-forming reactions are increasingly deeply understood, it is possible to produce esters in non-natural but more potential hosts. Clostridia are a group of important industrial microorganisms since they can produce a variety of volatile organic acids and alcohols with high titers, especially butanol and butyric acid through the CoA-dependent carbon chain elongation pathway. This implies sufficient supplies of acyl-CoA, organic acids, and alcohols in cells, which are precursors for ester production. Besides, some Clostridia could utilize lignocellulosic biomass, industrial off-gas, or crude glycerol to produce other branched or straight-chain alcohols and acids. Therefore, Clostridia offer great potential to be engineered to produce short- and medium-chain volatile esters. In the review, the efforts to produce esters from Clostridia via in vitro lipase-mediated catalysis and in vivo alcohol acyltransferase (AAT)-mediated reaction are comprehensively revisited. Besides, the advantageous characteristics of several Clostridia and clostridial consortia for bio-ester production and the driving force of synthetic biology to clostridial chassis development are also discussed. It is believed that synthetic biotechnology should enable the future development of more effective Clostridia for ester production.

5.
Front Microbiol ; 12: 654058, 2021.
Article in English | MEDLINE | ID: mdl-33897668

ABSTRACT

Corynebacterium glutamicum has been considered a promising synthetic biological platform for biomanufacturing and bioremediation. However, there are still some challenges in genetic manipulation of C. glutamicum. Recently, more and more genetic parts or elements (replicons, promoters, reporter genes, and selectable markers) have been mined, characterized, and applied. In addition, continuous improvement of classic molecular genetic manipulation techniques, such as allelic exchange via single/double-crossover, nuclease-mediated site-specific recombination, RecT-mediated single-chain recombination, actinophages integrase-mediated integration, and transposition mutation, has accelerated the molecular study of C. glutamicum. More importantly, emerging gene editing tools based on the CRISPR/Cas system is revolutionarily rewriting the pattern of genetic manipulation technology development for C. glutamicum, which made gene reprogramming, such as insertion, deletion, replacement, and point mutation, much more efficient and simpler. This review summarized the recent progress in molecular genetic manipulation technology development of C. glutamicum and discussed the bottlenecks and perspectives for future research of C. glutamicum as a distinctive microbial chassis.

6.
J Colloid Interface Sci ; 490: 488-496, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27918986

ABSTRACT

In this work, chitosan (CS) functionalized polyaniline-polypyrrole (Pani-Ppy) copolymer (CS/Pani-Ppy) was synthesized applying a facile one pot method for the enhanced adsorption of Zn(II) and antimicrobial activity for E. coli and E. agglomerans. The synthesized materials were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform inferred spectroscopy and X-ray photoelectron spectroscopy. The adsorption of the Zn(II) on the synthesized materials was highly dependent on the pH of the solution, the initial metal ion concentration, and temperature. The adsorption of Zn(II) on the studied materials was as follows: CS/Pani-Ppy>Pani-Ppy>Ppy>Pani>CS. The results reveal that adsorption of Zn(II) follows the Langmuir adsorption isotherm, and that chemisorption occurs through pendant and bridging interactions, with active adsorbent sites. Thermodynamic results show the adsorption is spontaneous and exothermic in nature. The synthesized materials show excellent antimicrobial activity against E. coli and E. agglomerans bacterial organisms, and an approximately 100% decline in the viability of both strains was observed with CS/Pani-Ppy and Pani-Ppy. The order of antimicrobial activity for the synthesized materials was as follows: CS/Ppy-Pani>Ppy-Pani>Ppy>Pani>CS. The results show that the greater activity of CS/Ppy-Pani resulted from the electrostatic interaction between positively charged amine groups and negatively charged bacteria.


Subject(s)
Aniline Compounds/chemistry , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Chitosan/analogs & derivatives , Polymers/chemistry , Pyrroles/chemistry , Zinc/isolation & purification , Adsorption , Aniline Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Cations, Divalent/isolation & purification , Chitosan/pharmacology , Enterobacteriaceae Infections/prevention & control , Escherichia/drug effects , Escherichia/isolation & purification , Humans , Polymers/pharmacology , Pyrroles/pharmacology
7.
Appl Environ Microbiol ; 79(21): 6712-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23995920

ABSTRACT

The solventogenic clostridia have a considerable capacity to ferment carbohydrate substrates with the production of acetone and butanol, making them attractive organisms for the conversion of waste materials to valuable products. In common with other anaerobes, the clostridia show a marked dependence on the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) to accumulate sugars and sugar derivatives. In this study, we demonstrate that extracts of Clostridium beijerinckii grown on N-acetylglucosamine (GlcNAc) exhibit PTS activity for the amino sugar. The PTS encoded by the divergent genes cbe4532 (encoding the IIC and IIB domains) and cbe4533 (encoding a IIA domain) was shown to transport and phosphorylate GlcNAc and also glucose. When the genes were recombined in series under the control of the lac promoter in pUC18 and transformed into a phosphotransferase mutant (nagE) of Escherichia coli lacking GlcNAc PTS activity, the ability to take up and ferment GlcNAc was restored, and extracts of the transformant showed PEP-dependent phosphorylation of GlcNAc. The gene products also complemented an E. coli mutant lacking glucose PTS activity but were unable to complement the same strain for PTS-dependent mannose utilization. Both GlcNAc and glucose induced the expression of cbe4532 and cbe4533 in C. beijerinckii, and consistent with this observation, extracts of cells grown on glucose exhibited PTS activity for GlcNAc, and glucose did not strongly repress utilization of GlcNAc by growing cells. On the basis of the phylogeny and function of the encoded PTS, we propose that the genes cbe4532 and cbe4533 should be designated nagE and nagF, respectively.


Subject(s)
Acetylglucosamine/metabolism , Bacterial Proteins/metabolism , Clostridium beijerinckii/enzymology , Gene Expression Regulation, Bacterial/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Bacterial Proteins/genetics , Cloning, Molecular , Clostridium beijerinckii/genetics , Cluster Analysis , Computational Biology , DNA Probes , Escherichia coli/genetics , Genetic Complementation Test , Glucose/metabolism , Oligonucleotides/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphorylation , Phylogeny , Sequence Alignment , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...