Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 30(15): 3869-3881, 2021 08.
Article in English | MEDLINE | ID: mdl-34008895

ABSTRACT

Shifts in microbial communities represent a rapid response mechanism for host organisms to respond to changes in environmental conditions. Therefore, they are likely to be important in assisting the acclimatization of hosts to seasonal temperature changes as well as to variation in temperatures across a species' range. The Persian/Arabian Gulf is the world's warmest sea, with large seasonal fluctuations in temperature (20℃ - 37℃) and is connected to the Gulf of Oman which experiences more typical oceanic conditions (<32℃ in the summer). This system is an informative model for understanding how symbiotic microbial assemblages respond to thermal variation across temporal and spatial scales. Here, we elucidate the role of temperature on the microbial gut community of the sea urchin Echinometra sp. EZ and identify microbial taxa that are tightly correlated with the thermal environment. We generated two independent datasets with a high degree of geographic and temporal resolution. The results show that microbial communities vary across thermally variable habitats, display temporal shifts that correlate with temperature, and can become more disperse as temperatures rise. The relative abundances of several ASVs significantly correlate with temperature in both independent datasets despite the >300 km distance between the furthest sites and the extreme seasonal variations. Notably, over 50% of the temperature predictive ASVs identified from the two datasets belonged to the family Vibrionaceae. Together, our results identify temperature as a robust predictor of community-level variation and highlight specific microbial taxa putatively involved in the response to thermal environment.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Microbiota/genetics , Sea Urchins , Seasons , Temperature
2.
Genome Biol Evol ; 12(10): 1819-1829, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32697837

ABSTRACT

Extreme environmental gradients represent excellent study systems to better understand the variables that mediate patterns of genomic variation between populations. They also allow for more accurate predictions of how future environmental change might affect marine species. The Persian/Arabian Gulf is extreme in both temperature and salinity, whereas the adjacent Gulf of Oman has conditions more typical of tropical oceans. The sea urchin Echinometra sp. EZ inhabits both of these seas and plays a critical role in coral reef health as a grazer and bioeroder, but, to date, there have been no population genomic studies on this or any urchin species in this unique region. E sp. EZ's life history traits (e.g., large population sizes, large reproductive clutches, and long life spans), in theory, should homogenize populations unless nonneutral processes are occurring. Here, we generated a draft genome and a restriction site-associated DNA sequencing data set from seven populations along an environmental gradient across the Persian/Arabian Gulf and the Gulf of Oman. The estimated genome size of E. sp. EZ was 609 Mb and the heterozygosity was among the highest recorded for an echinoderm at 4.5%. We recovered 918 high-quality SNPs from 85 individuals which we then used in downstream analyses. Population structure analyses revealed a high degree of admixture between all sites, although there was population differentiation and significant pairwise FST values between the two seas. Preliminary results suggest migration is bidirectional between the seas and nine candidate loci were identified as being under putative natural selection, including one collagen gene. This study is the first to investigate the population genomics of a sea urchin from this extreme environmental gradient and is an important contribution to our understanding of the complex spatial patterns that drive genomic divergence.


Subject(s)
Animal Migration , Extreme Environments , Genome , Sea Urchins/genetics , Selection, Genetic , Animals , Ecosystem , Indian Ocean , Polymorphism, Single Nucleotide , Salinity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...