Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 30(1): 103506, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36458098

ABSTRACT

The study in vivo assessed the effect of pinostrobin on the histology, immunohistochemistry, and biochemical parameters of thioacetamide (TAA) induced liver cirrhosis in Sprague Dawley rats. The rats were noticeably gavaged with two doses of pinostrobin (30 mg/kg and 60 mg/kg) with TAA and exhibited a substantial decrease in the liver index and hepatocyte propagation with much minor cell injury. These groups meaningfully down-regulated the proliferation of cellular nucleus antigen (PCNA) and alpha-smooth muscle actin (α-SMA). The liver homogenate displayed augmented antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) activities escorted with reducing in malondialdehyde (MDA) level. The serum level of bilirubin, total protein, albumin, and liver enzymes (ALP, ALT, and AST) returned to normal and was similar to that of normal control and silymarin with TAA-treated groups. pinostrobin-fed groups also decreased the level of Tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and increased the level of Interleukin-10 (IL-10). Acute toxicity with a higher dose of 500 mg/kg of pinostrobin did not manifest any toxicological signs in rats. The hepatoprotective effect of pinostrobin could be due to potentially inhibited the progression of liver cirrhosis, down-regulation of PCNA and α-SMA proliferation, prevented oxidation of hepatocytes, improved SOD and CAT enzymes, condensed MDA, repairs of liver biomarkers, reduced cellular inflammation and modulation of inflammatory cytokines.

2.
Biomed Pharmacother ; 154: 113550, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35994814

ABSTRACT

Silver nanoparticles (Ag NPs) have unique properties and display an important role in bioactivities such as antimicrobial, antiviral, antifungal, and anticancer. Stable Ag NPs were prepared by reaction of silver nitrate solution with extract of Melissa and characterized by UV-Vis spectroscopy, AFM, SEM, XRD, and Zeta potential. The resulted Ag NPs have a size range between 20 and 35 nm. The current study aims to evaluate the gastroprotective effect of Ag NPs against ethanol-induced gastric ulcers in rats. Thirty rats were randomly divided into five groups. The experimental groups were fed 175 and 350 ppm/p.o of Ag NPs orally. Ag NPs improved the adversative influence of ethanol-induced stomach damage as confirmed by declining ulcer index and raised the percentage of ulcer prevention. Significantly reduced ethanol-induced gastric lesions were evidenced by increased mucus secretion and pH of stomach content, decreased ulcer area, nonappearance of edema, and leucocyte penetration of the subcutaneous layer. In gastric homogenate, Ag NPs displayed a substantial upsurge in superoxide dismutase (SOD), catalase (CAT) activities, and significantly reduced malondialdehyde (MDA) levels., Ag NPs increased the intensity of periodic acid Schiff stained (PAS) and produced over-regulation of HSP-70 and down-regulation of Bax proteins. Ag NPs confirmed gastro-protection which might be attributed to its antioxidant effect, increased mucus secretion, increased SOD, and CAT, reduced MDA level, over-regulation of HSP-70 protein, and down-regulation of Bax protein.


Subject(s)
Anti-Ulcer Agents , Metal Nanoparticles , Stomach Ulcer , Animals , Anti-Ulcer Agents/adverse effects , Antioxidants/metabolism , Ethanol/pharmacology , Gastric Mucosa , HSP70 Heat-Shock Proteins/metabolism , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Silver/pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Superoxide Dismutase/metabolism , Ulcer/drug therapy , Ulcer/metabolism , Ulcer/pathology
3.
Saudi J Biol Sci ; 29(1): 564-573, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35002452

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Since ancient times, herbal medicines have been applied in the treatment of cancer. Tea, derivative from the dried leaves of Camellia sinensis (L.) Kuntze plant is the most popular beverage globally after water and is available in various forms. Green tea has been expansively investigated for its beneficial properties of cancer prevention and therapy. The goal of the research: The current study was conducted to evaluate the hepaprotective character of methanolic green tea extract and its mechanism of action contrary to thioacetamide (TAA)-produced liver fibrosis of Sprague Dawley rats. MATERIALS AND METHODS: Thirty rodents were equally placed in 5 clusters including normal control, TAA group as a positive control, silymarin as standard drug control, and treatment groups consisting of high dose and a low dose Camellia sinensis. Rats in experimental clusters by mouth fed with C. sinensis at 250 mg/kg or 500 mg/kg daily for 2 months. After 60 days, all rats were sacrificed. Blood specimens were gathered for liver biochemical examination. Livers of all groups were dissected out and subjected to histopathological examination through the Hematoxylin and Eosin stain, Masson trichrome, and immunohistochemistry stains (PCNA). Liver tissue homogenate was also analyzed for antioxidant activity parameters. RESULTS: Gross morphological examination showed a regular liver architecture in C. sinensis fed collections compared to the TAA sets. Histology of rat's liver fed with C. sinensis showed an important decrease in the liver index with hepatic cells propagation, mild cellular injury, and immunostaining showed significant down-expression of proliferating cell nuclear antigen (PCNA). TAA produced liver fibrosis through a significant increase in serum alanine transferase, aspartate aminotransferase, alkaline phosphatase, and bilirubin. Total protein and albumin also decreased in the TAA group. Moreover, the reduction of antioxidant enzyme activity including superoxide dismutase and catalase as well as the increase in malondialdehyde was detected in the TAA control group. Meanwhile, an abnormal level of liver biochemical parameters was restored closer to the normal levels in serum of the C. sinensis-fed clusters. In addition, C. sinensis fed assemblies showed elevated antioxidative enzymes activity with a reduction in malondialdehyde level comparable to the levels in silymarin-treated rats. CONCLUSIONS: Green tea potentially inhibited the progression of liver cirrhosis, down -regulation of PCNA proliferation, prevented oxidation of hepatocytes, recovered SOD and CAT enzymes, condensed MDA and reduced cellular inflammation.

4.
Biochem J ; 474(19): 3227-3240, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28798096

ABSTRACT

S100P protein in human breast cancer cells is associated with reduced patient survival and, in a model system of metastasis, it confers a metastatic phenotype upon benign mammary tumour cells. S100P protein possesses a C-terminal lysine residue. Using a multiwell in vitro assay, S100P is now shown for the first time to exhibit a strong, C-terminal lysine-dependent activation of tissue plasminogen activator (tPA), but not of urokinase-catalysed plasminogen activation. The presence of 10 µM calcium ions stimulates tPA activation of plasminogen 2-fold in an S100P-dependent manner. S100P physically interacts with both plasminogen and tPA in vitro, but not with urokinase. Cells constitutively expressing S100P exhibit detectable S100P protein on the cell surface, and S100P-containing cells show enhanced activation of plasminogen compared with S100P-negative control cells. S100P shows C-terminal lysine-dependent enhancement of cell invasion. An S100P antibody, when added to the culture medium, reduced the rate of invasion of wild-type S100P-expressing cells, but not of cells expressing mutant S100P proteins lacking the C-terminal lysine, suggesting that S100P functions outside the cell. The protease inhibitors, aprotinin or α-2-antiplasmin, reduced the invasion of S100P-expressing cells, but not of S100P-negative control cells, nor cells expressing S100P protein lacking the C-terminal lysine. It is proposed that activation of tPA via the C-terminal lysine of S100P contributes to the enhancement of cell invasion by S100P and thus potentially to its metastasis-promoting activity.


Subject(s)
Calcium-Binding Proteins/metabolism , Neoplasm Metastasis/pathology , Neoplasm Proteins/metabolism , Tissue Plasminogen Activator/metabolism , Animals , Calcium/metabolism , Cations, Divalent , Cell Line, Tumor , Mutation , Neoplasm Invasiveness , Plasminogen/metabolism , Protease Inhibitors/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...