Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Am J Med Genet A ; 188(1): 116-129, 2022 01.
Article in English | MEDLINE | ID: mdl-34590781

ABSTRACT

Woodhouse-Sakati syndrome (WSS) is a rare autosomal recessive neuroendocrine and ectodermal disorder caused by variants in the DCAF17 gene. In Qatar, the c.436delC variant has been reported as a possible founder pathogenic variant with striking phenotypic heterogeneity. In this retrospective study, we report on the clinical and molecular characteristics of additional 58 additional Qatari patients with WSS and compare them to international counterparts' findings. A total of 58 patients with WSS from 32 consanguineous families were identified. Ectodermal and endocrine (primary hypogonadism) manifestations were the most common presentations (100%), followed by diabetes mellitus (46%) and hypothyroidism (36%). Neurological manifestations were overlapping among patients with intellectual disability (ID) being the most common (75%), followed by sensorineural hearing loss (43%) and both ID and aggressive behavior (10%). Distinctive facial features were noted in all patients and extrapyramidal manifestations were uncommon (8.6%). This study is the largest to date on Qatari patients with WSS and highlights the high incidence and clinical heterogeneity of WSS in Qatar due to a founder variant c.436delC in the DCAF17 gene. Early suspicion of WSS among Qatari patients with hypogonadism and ID, even in the absence of other manifestations, would shorten the diagnostic odyssey, guide early and appropriate management, and avoid potential complications.


Subject(s)
Diabetes Mellitus , Hypogonadism , Intellectual Disability , Alopecia , Animals , Arrhythmias, Cardiac , Basal Ganglia Diseases , Diabetes Mellitus/diagnosis , Humans , Hypogonadism/diagnosis , Hypogonadism/genetics , Intellectual Disability/diagnosis , Nuclear Proteins/genetics , Pedigree , Qatar/epidemiology , Retrospective Studies , Ubiquitin-Protein Ligase Complexes/genetics
2.
Gene Ther ; 28(10-11): 676-680, 2021 11.
Article in English | MEDLINE | ID: mdl-34276047

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by hypotonia, progressive muscle weakness, and wasting. Onasemnogene abeparvovec (Zolgensma®) is a novel gene therapy medicine, FDA-approved in May 2019 for the treatment of SMA. This study aimed to describe Qatari experience with onasemnogene abeparvovec by reviewing the clinical outcomes of 9 SMA children (7 SMA type 1 and 2 with SMA type 2) aged 4‒23 months treated between November 2019 and July 2020. Children <2 years with 5q SMA with a bi-allelic mutation in the SMN1 gene were eligible for gene therapy. Liver function (aspartate aminotransferase [AST], alanine aminotransferase [ALT], and total bilirubin), platelet count, coagulation profile, troponin-I levels, and motor scores (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders [CHOP INTEND]), were regularly monitored following gene therapy. All patients experienced elevated AST or ALT, two experienced high prothrombin time, and one experienced elevated bilirubin; all of these patients were asymptomatic. Furthermore, one event of vomiting after infusion was reported in one patient. Significant improvements in CHOP INTEND scores were observed following therapy. This study describes the short-term outcomes and safety of onasemnogene abeparvovec, which is well tolerated and shows promise for early efficacy.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Bilirubin , Child , Genetic Therapy , Humans , Infant , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/therapy , Mutation , Spinal Muscular Atrophies of Childhood/drug therapy , Spinal Muscular Atrophies of Childhood/therapy
3.
Am J Med Genet A ; 182(11): 2570-2580, 2020 11.
Article in English | MEDLINE | ID: mdl-32856792

ABSTRACT

Griscelli syndrome type 2 (GS2) is a rare autosomal recessive disorder caused by pathogenic variants in the RAB27A gene and characterized by partial albinism, immunodeficiency, and occasional hematological and neurological involvement. We reviewed and analyzed the medical records of 12 individuals with GS2 from six families belonging to a highly consanguineous Qatari tribe and with a recurrent pathogenic variant in the RAB27A gene (NM_004580.4: c.244C > T, p.Arg82Cys). Detailed demographic, clinical, and molecular data were collected. Cutaneous manifestations were the most common presentation (42%), followed by neurological abnormalities (33%) and immunodeficiency (25%). The most severe manifestation was HLH (33%). Among the 12 patients, three patients (25%) underwent HSCT, and four (33%) died. The cause of death in all four patients was deemed HLH, providing evidence for this complication's fatal nature. Interestingly, two affected patients (16%) were asymptomatic. This report highlights the broad spectrum of clinical presentations of GS2 associated with a founder variant in the RAB27A gene (c.244C > T, p.Arg82Cys). Early suspicion of GS2 among Qatari patients with cutaneous manifestations, neurological findings, immunodeficiency, and HLH would shorten the diagnostic odyssey, guide early and appropriate treatment, and prevent fatal outcomes.


Subject(s)
Founder Effect , Lymphohistiocytosis, Hemophagocytic/genetics , Phenotype , Piebaldism/genetics , Primary Immunodeficiency Diseases/genetics , rab27 GTP-Binding Proteins/genetics , Adolescent , Child , Child, Preschool , Exome , Family Health , Female , Homozygote , Humans , Infant , Male , Pedigree , Qatar , Recurrence , Young Adult
4.
J Inherit Metab Dis ; 42(5): 818-830, 2019 09.
Article in English | MEDLINE | ID: mdl-30968424

ABSTRACT

Classical homocystinuria (HCU) is the most common inborn error of metabolism in Qatar, with an incidence of 1:1800, and is caused by the Qatari founder p.R336C mutation in the CBS gene. This study describes the natural history and clinical manifestations of HCU in the Qatari population. A single center study was performed between 2016 and 2017 in 126 Qatari patients, from 82 families. Detailed clinical and biochemical data were collected, and Stanford-Binet intelligence, quality of life and adherence to treatment assessments were conducted prospectively. Patients were assigned to one of three groups, according to the mode of diagnosis: (a) late diagnosis group (LDG), (b) family screening group (FSG), and (c) newborn screening group (NSG). Of the 126 patients, 69 (55%) were in the LDG, 44 (35%) in the NSG, and 13 (10%) in the FSG. The leading factors for diagnosis in the LDG were ocular manifestations (49%), neurological manifestations (45%), thromboembolic events (4%), and hyperactivity and behavioral changes (1%). Both FSG and NSG groups were asymptomatic at time of diagnosis. NSG had significantly higher intelligence quotient, quality of life, and adherence values compared with the LDG. The LDG and FSG had significantly higher methionine levels than the NSG. The LDG also had significantly higher total homocysteine levels than the NSG and FSG. Regression analysis confirmed these results even when adjusting for age at diagnosis, current age, or adherence. These findings increase the understanding of the natural history of HCU and highlight the importance of early diagnosis and treatment. SYNOPSIS: A study in 126 Qatari patients with HCU, including biochemical, clinical, and other key assessments, reveals that patients with a late clinical diagnosis have a poorer outcome, hereby highlighting the importance of early diagnosis and treatment.


Subject(s)
Cystathionine beta-Synthase/genetics , Homocystinuria/diagnosis , Homocystinuria/genetics , Adolescent , Adult , Child , Child, Preschool , Cystathionine beta-Synthase/deficiency , Early Diagnosis , Female , Humans , Infant , Infant, Newborn , Male , Mutation , Neonatal Screening , Qatar , Regression Analysis , Young Adult
5.
Am J Med Genet A ; 179(6): 927-935, 2019 06.
Article in English | MEDLINE | ID: mdl-30919572

ABSTRACT

BACKGROUND: Clinical exome sequencing (CES) is rapidly becoming the diagnostic test of choice in patients with suspected Mendelian diseases especially those that are heterogeneous in etiology and clinical presentation. Reporting large CES series can inform guidelines on best practices for test utilization, and improves accuracy of variant interpretation through clinically-oriented data sharing. METHODS: This is a retrospective series of 509 probands from Qatar who underwent singleton or trio CES either as a reflex or naïve (first-tier) test from April 2014 to December 2016 for various clinical indications. RESULTS: The CES diagnostic yield for the overall cohort was 48.3% (n = 246). Dual molecular diagnoses were observed in 2.1% of cases; nearly all of whom (91%) were consanguineous. We report compelling variants in 11 genes with no established Mendelian phenotypes. Unlike reflex-WES, naïve WES was associated with a significantly shorter diagnostic time (3 months vs. 18 months, p < 0.0001). CONCLUSION: Middle Eastern patients tend to have a higher yield from CES than outbred populations, which has important implications in test choice especially early in the diagnostic process. The relatively high diagnostic rate is likely related to the predominance of recessive diagnoses (60%) since consanguinity and positive family history were strong predictors of a positive CES.


Subject(s)
Exome Sequencing , Family , Genetic Association Studies , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Adolescent , Adult , Alleles , Child , Child, Preschool , Consanguinity , DNA Mutational Analysis , Female , Genetic Association Studies/methods , Genetic Diseases, Inborn/diagnosis , Genotype , Humans , Infant , Infant, Newborn , Male , Mutation , Pathology, Molecular , Phenotype , Qatar/epidemiology , Qatar/ethnology , Young Adult
6.
JIMD Rep ; 43: 79-83, 2019.
Article in English | MEDLINE | ID: mdl-29721912

ABSTRACT

MICU1 encodes a Ca2+ sensing, regulatory subunit of the mitochondrial uniporter, a selective calcium channel within the organelle's inner membrane. Ca2+ entry into mitochondria helps to buffer cytosolic Ca2+ transients and also activates ATP production within the organelle. Mutations in MICU1 have previously been reported in 17 children from nine families with muscle weakness, fatigue, normal lactate, and persistently elevated creatine kinase, as well as variable features that include progressive extrapyramidal signs, learning disabilities, nystagmus, and cataracts. In this study, we report the clinical features of an additional 13 patients from consanguineous Middle Eastern families with recessive mutations in MICU1. Of these patients, 12/13 are homozygous for a novel founder mutation c.553C>T (p.Q185*) that is predicted to lead to a complete loss of function of MICU1, while one patient is compound heterozygous for this mutation and an intragenic duplication of exons 9 and 10. The founder mutation occurs with a minor allele frequency of 1:60,000 in the ExAC database, but in ~1:500 individual in the Middle East. All 13 of these patients presented with developmental delay, learning disability, muscle weakness and easy fatigability, and failure to thrive, as well as additional variable features we tabulate. Consistent with previous cases, all of these patients had persistently elevated serum creatine kinase with normal lactate levels, but they also exhibited elevated transaminase enzymes. Our work helps to better define the clinical sequelae of MICU1 deficiency. Furthermore, our work suggests that targeted analysis of the MICU1 founder mutation in Middle Eastern patients may be warranted.

8.
Hum Genet ; 134(9): 967-80, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26077850

ABSTRACT

Clinical exome sequencing (CES) has become an increasingly popular diagnostic tool in patients with heterogeneous genetic disorders, especially in those with neurocognitive phenotypes. Utility of CES in consanguineous populations has not yet been determined on a large scale. A clinical cohort of 149 probands from Qatar with suspected Mendelian, mainly neurocognitive phenotypes, underwent CES from July 2012 to June 2014. Intellectual disability and global developmental delay were the most common clinical presentations but our cohort displayed other phenotypes, such as epilepsy, dysmorphism, microcephaly and other structural brain anomalies and autism. A pathogenic or likely pathogenic mutation, including pathogenic CNVs, was identified in 89 probands for a diagnostic yield of 60%. Consanguinity and positive family history predicted a higher diagnostic yield. In 5% (7/149) of cases, CES implicated novel candidate disease genes (MANF, GJA9, GLG1, COL15A1, SLC35F5, MAGE4, NEUROG1). CES uncovered two coexisting genetic disorders in 4% (6/149) and actionable incidental findings in 2% (3/149) of cases. Average time to diagnosis was reduced from 27 to 5 months. CES, which already has the highest diagnostic yield among all available diagnostic tools in the setting of Mendelian disorders, appears to be particularly helpful diagnostically in the highly consanguineous Middle Eastern population.


Subject(s)
Developmental Disabilities/diagnosis , Exome , Intellectual Disability/diagnosis , Sequence Analysis, DNA/methods , Adolescent , Adult , Arabs/genetics , Child , Child, Preschool , Consanguinity , Developmental Disabilities/genetics , Epilepsy/genetics , Female , Genetic Testing , Genomics , Humans , Infant , Intellectual Disability/genetics , Male , Microcephaly/genetics , Middle Aged , Phenotype , Qatar , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...