Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 187: 281-295, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34314794

ABSTRACT

This research aimed to design innovative therapeutic bio-composites that enhance odontogenic and osteogenic differentiation of human dental pulp-derived mesenchymal stem cells (h-DPSCs) in-vitro regeneration. Herein, we report the fabrication of scaffolds containing chitosan, Ca-SAPO-34 monometallic and/or Fe-Ca-SAPO-34 bimetallic nanoparticles by freeze-drying technique. The scaffolds and nanoparticles were characterized using ICP-AES, FT-IR, XRD, TGA, TEM, BET, SEM, and EDS methods. The effects of SAPO-34 and nanoparticles were investigated by changes on the physicochemical properties of scaffolds including swelling ratio, density, porosity, bio-degradation, mechanical behavior, and biomineralization. Cell viability, cell adhesion and cytotoxicity of Ca-SAPO-34/CS and Fe-Ca-SAPO-34 scaffolds were investigated by MTT assay and SEM on h-DPSCs which revealed cell proliferation no toxicity on scaffolds. Cell tests demonstrated that Ca-SAPO-34/CS scaffold clearly displayed a positive effect on differentiation of hDPSCs into osteogenic/odontogenic cells and moderate effect on cell proliferation. Moreover, the incorporation of Fe2O3 to Ca-SAPO-34/CS scaffold promoted the proliferation of hDPSCs and osteogenic differentiation. Alizarin red, Alkaline phosphatase and QRT-PCR results showed that Fe-Ca-loaded SAPO-34/CS can lead to osteoblast/odontoblast differentiation in DPSCs through the up-regulation of related genes, thus indicating that Fe-Ca-SAPO-34/CS has remarkable prospects as a biomaterial for hard tissue engineering.


Subject(s)
Calcium/chemistry , Chitosan/chemistry , Dental Pulp/cytology , Iron/chemistry , Mesenchymal Stem Cells/physiology , Regeneration , Tissue Engineering , Tissue Scaffolds , Zeolites/chemistry , Cell Adhesion , Cell Proliferation , Cell Shape , Cell Survival , Cells, Cultured , Freeze Drying , Hardness , Humans , Metal Nanoparticles , Nanotechnology , Osteogenesis , Phenotype , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL