Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 1395, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907325

ABSTRACT

Regulatory T cells (Tregs) play an important role in controlling inflammation and limiting autoimmunity, but their phenotypes at inflammatory sites in human disease are poorly understood. We here analyze the single-cell transcriptome of >16,000 Tregs obtained from peripheral blood and synovial fluid of two patients with HLA-B27+ ankylosing spondylitis and three patients with psoriatic arthritis, closely related forms of inflammatory spondyloarthritis. We identify multiple Treg clusters with distinct transcriptomic profiles, including, among others, a regulatory CD8+ subset expressing cytotoxic markers/genes, and a Th17-like RORC+ Treg subset characterized by IL-10 and LAG-3 expression. Synovial Tregs show upregulation of interferon signature and TNF receptor superfamily genes, and marked clonal expansion, consistent with tissue adaptation and antigen contact respectively. Individual synovial Treg clones map to different clusters indicating cell fate divergence. Finally, we demonstrate that LAG-3 directly inhibits IL-12/23 and TNF secretion by patient-derived monocytes, a mechanism with translational potential in SpA. Our detailed characterization of Tregs at an important inflammatory site illustrates the marked specialization of Treg subpopulations.


Subject(s)
Gene Expression , Spondylarthritis/physiopathology , Synovial Fluid/chemistry , T-Lymphocytes, Regulatory/metabolism , Adult , Aged , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Single-Cell Analysis
2.
Nat Med ; 26(2): 193-199, 2020 02.
Article in English | MEDLINE | ID: mdl-32042196

ABSTRACT

Immune checkpoint blockade (ICB) of PD-1 and CTLA-4 to treat metastatic melanoma (MM) has variable therapeutic benefit. To explore this in peripheral samples, we characterized CD8+ T cell gene expression across a cohort of patients with MM receiving anti-PD-1 alone (sICB) or in combination with anti-CTLA-4 (cICB). Whereas CD8+ transcriptional responses to sICB and cICB involve a shared gene set, the magnitude of cICB response is over fourfold greater, with preferential induction of mitosis- and interferon-related genes. Early samples from patients with durable clinical benefit demonstrated overexpression of T cell receptor-encoding genes. By mapping T cell receptor clonality, we find that responding patients have more large clones (those occupying >0.5% of repertoire) post-treatment than non-responding patients or controls, and this correlates with effector memory T cell percentage. Single-cell RNA-sequencing of eight post-treatment samples demonstrates that large clones overexpress genes implicated in cytotoxicity and characteristic of effector memory T cells, including CCL4, GNLY and NKG7. The 6-month clinical response to ICB in patients with MM is associated with the large CD8+ T cell clone count 21 d after treatment and agnostic to clonal specificity, suggesting that post-ICB peripheral CD8+ clonality can provide information regarding long-term treatment response and, potentially, facilitate treatment stratification.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CTLA-4 Antigen/immunology , Immunotherapy/methods , Melanoma/immunology , Melanoma/therapy , Adult , Antibodies/therapeutic use , Antigens, Differentiation, T-Lymphocyte/genetics , Cell Proliferation , Chemokine CCL4/genetics , Cohort Studies , Female , Gene Expression Profiling , Humans , Immune System , Male , Membrane Proteins/genetics , Middle Aged , Neoplasm Metastasis , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis , Young Adult
3.
Rheumatology (Oxford) ; 57(suppl_6): vi4-vi9, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30445483

ABSTRACT

AS is a common rheumatic condition characterized by inflammation and new bone formation. The pathogenesis of AS is likely multifactorial and has not been fully elucidated to date. A major genetic role has been demonstrated. The strongest genetic association is with HLA B27. Numerous other associated genetic polymorphisms have been identified, including those affecting the type 17 immune pathway, although the precise link between genetics and pathogenesis remains unexplained. Several immunological alterations, together with recent therapeutic advances, support a central role for IL-23- and IL-17-producing immune cells in disease pathogenesis. Recently, perturbations of gut microbiota of AS patients have further catalysed research and offer potential for future therapeutic intervention. In this review we outline the genetic basis of AS and describe the current hypotheses for disease pathogenesis. We synthesize recent experimental research data and clinical studies to support a central role for the type 17/23 immune axis in AS.


Subject(s)
Genetic Predisposition to Disease/genetics , Spondylitis, Ankylosing/genetics , Gastrointestinal Microbiome , HLA-B27 Antigen/genetics , Humans , Interleukin-17/genetics , Interleukin-23/genetics , Polymorphism, Genetic , Spondylitis, Ankylosing/microbiology
4.
Sci Rep ; 8(1): 15645, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353145

ABSTRACT

Treatment options for Ankylosing Spondylitis (AS) are still limited. The T helper cell 17 (Th17) pathway has emerged as a major driver of disease pathogenesis and a good treatment target. Janus kinases (JAK) are key transducers of cytokine signals in Th17 cells and therefore promising targets for the treatment of AS. Here we investigate the therapeutic potential of four different JAK inhibitors on cells derived from AS patients and healthy controls, cultured in-vitro under Th17-promoting conditions. Levels of IL-17A, IL-17F, IL-22, GM-CSF and IFNγ were assessed by ELISA and inhibitory effects were investigated with Phosphoflow. JAK1/2/3 and TYK2 were silenced in CD4+ T cells with siRNA and effects analyzed by ELISA (IL-17A, IL-17F and IL-22), Western Blot, qPCR and Phosphoflow. In-vitro inhibition of CD4+ T lymphocyte production of multiple Th17 cytokines (IL-17A, IL-17F and IL-22) was achieved with JAK inhibitors of differing specificity, as well as by silencing of JAK1-3 and Tyk2, without impacting on cell viability or proliferation. Our preclinical data suggest JAK inhibitors as promising candidates for therapeutic trials in AS, since they can inhibit multiple Th17 cytokines simultaneously. Improved targeting of TYK2 or other JAK isoforms may confer tailored effects on Th17 responses in AS.


Subject(s)
Janus Kinases/antagonists & inhibitors , Molecular Targeted Therapy , Spondylitis, Ankylosing/enzymology , Spondylitis, Ankylosing/immunology , Th17 Cells/immunology , Adult , Case-Control Studies , Cytokines/metabolism , Female , Humans , Interleukin-17/biosynthesis , Janus Kinases/metabolism , Male , Middle Aged , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/metabolism , STAT Transcription Factors/metabolism , Small Molecule Libraries/pharmacology , Spondylitis, Ankylosing/pathology , Synovial Fluid/drug effects , Synovial Fluid/metabolism , Th17 Cells/drug effects
6.
Proc Natl Acad Sci U S A ; 112(34): 10768-73, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26261308

ABSTRACT

Th17 responses are critical to a variety of human autoimmune diseases, and therapeutic targeting with monoclonal antibodies against IL-17 and IL-23 has shown considerable promise. Here, we report data to support selective bromodomain blockade of the transcriptional coactivators CBP (CREB binding protein) and p300 as an alternative approach to inhibit human Th17 responses. We show that CBP30 has marked molecular specificity for the bromodomains of CBP and p300, compared with 43 other bromodomains. In unbiased cellular testing on a diverse panel of cultured primary human cells, CBP30 reduced immune cell production of IL-17A and other proinflammatory cytokines. CBP30 also inhibited IL-17A secretion by Th17 cells from healthy donors and patients with ankylosing spondylitis and psoriatic arthritis. Transcriptional profiling of human T cells after CBP30 treatment showed a much more restricted effect on gene expression than that observed with the pan-BET (bromo and extraterminal domain protein family) bromodomain inhibitor JQ1. This selective targeting of the CBP/p300 bromodomain by CBP30 will potentially lead to fewer side effects than with the broadly acting epigenetic inhibitors currently in clinical trials.


Subject(s)
Benzimidazoles/pharmacology , Immunosuppressive Agents/pharmacology , Interleukin-17/metabolism , Isoxazoles/pharmacology , Th17 Cells/drug effects , p300-CBP Transcription Factors/antagonists & inhibitors , Adult , Aged , Arthritis, Psoriatic/metabolism , Arthritis, Psoriatic/pathology , Azepines/pharmacology , Benzimidazoles/chemistry , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Calorimetry , Cells, Cultured , Crystallography, X-Ray , Drug Evaluation, Preclinical , Female , Gene Expression Regulation/drug effects , Humans , Immunosuppressive Agents/chemistry , Interleukin-17/biosynthesis , Interleukin-17/genetics , Isoxazoles/chemistry , Kinetics , Male , Middle Aged , Models, Molecular , Molecular Structure , Protein Conformation , Protein Structure, Tertiary/drug effects , Recombinant Proteins/metabolism , Spondylitis, Ankylosing/metabolism , Spondylitis, Ankylosing/pathology , Structure-Activity Relationship , Th17 Cells/immunology , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...