Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 19(1): 16, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28122639

ABSTRACT

BACKGROUND: Growing evidence supports a key role for inflammation in the onset and progression of tendinopathy. However, the effect of the inflammatory infiltrate on tendon cells is poorly understood. METHODS: We investigated stromal fibroblast activation signatures in tissues and cells from patients with tendinopathy. Diseased tendons were collected from well-phenotyped patient cohorts with supraspinatus tendinopathy before and after sub-acromial decompression treatment. Healthy tendons were collected from patients undergoing shoulder stabilisation or anterior cruciate ligament repair. Stromal fibroblast activation markers including podoplanin (PDPN), CD106 (VCAM-1) and CD248 were investigated by immunostaining, flow cytometry and RT-qPCR. RESULTS: PDPN, CD248 and CD106 were increased in diseased compared to healthy tendon tissues. This stromal fibroblast activation signature persisted in tendon biopsies in patients at 2-4 years post treatment. PDPN, CD248 and CD106 were increased in diseased compared to healthy tendon cells. IL-1ß treatment induced PDPN and CD106 but not CD248. IL-1ß treatment induced NF-κB target genes in healthy cells, which gradually declined following replacement with cytokine-free medium, whilst PDPN and CD106 remained above pre-stimulated levels. IL-1ß-treated diseased cells had more profound induction of PDPN and CD106 and sustained expression of IL6 and IL8 mRNA compared to IL-1ß-treated healthy cells. CONCLUSIONS: We conclude that stromal fibroblast activation markers are increased and persist in diseased compared to healthy tendon tissues and cells. Diseased tendon cells have distinct stromal fibroblast populations. IL-1ß treatment induced persistent stromal fibroblast activation which was more profound in diseased cells. Persistent stromal fibroblast activation may be implicated in the development of chronic inflammation and recurrent tendinopathy. Targeting this stromal fibroblast activation signature is a potential therapeutic strategy.


Subject(s)
Fibroblasts/metabolism , Stromal Cells/cytology , Tendinopathy/genetics , Tendons/metabolism , Adult , Aged , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cells, Cultured , Chronic Disease , Female , Fibroblasts/drug effects , Flow Cytometry , Humans , Immunohistochemistry , Interleukin-1beta/pharmacology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Tendinopathy/metabolism , Tendinopathy/pathology , Tendons/drug effects , Tendons/pathology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Young Adult
2.
Ann Rheum Dis ; 75(5): 916-23, 2016 May.
Article in English | MEDLINE | ID: mdl-26130142

ABSTRACT

OBJECTIVE: Human leucocyte antigen (HLA)-B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly associated with ankylosing spondylitis (AS). ERAP1 is a key aminopeptidase in HLA class I presentation and can potentially alter surface expression of HLA-B27 free heavy chains (FHCs). We studied the effects of ERAP1 silencing/inhibition/variations on HLA-B27 FHC expression and Th17 responses in AS. METHODS: Flow cytometry was used to measure surface expression of HLA class I in peripheral blood mononuclear cells (PBMCs) from patients with AS carrying different ERAP1 genotypes (rs2287987, rs30187 and rs27044) and in ERAP1-silenced/inhibited/mutated HLA-B27-expressing antigen presenting cells (APCs). ERAP1-silenced/inhibited APCs were cocultured with KIR3DL2CD3ε-reporter cells or AS CD4+ T cells. Th17 responses of AS CD4+ T cells were measured by interleukin (IL)-17A ELISA and Th17 intracellular cytokine staining. FHC cell surface expression and Th17 responses were also measured in AS PBMCs following ERAP1 inhibition. RESULTS: The AS-protective ERAP1 variants, K528R and Q730E, were associated with reduced surface FHC expression by monocytes from patients with AS and HLA-B27-expressing APCs. ERAP1 silencing or inhibition in APCs downregulated HLA-B27 FHC surface expression, reduced IL-2 production by KIR3DL2CD3ε-reporter cells and suppressed the Th17 expansion and IL-17A secretion by AS CD4+ T cells. ERAP1 inhibition of AS PBMCs reduced HLA class I FHC surface expression by monocytes and B cells, and suppressed Th17 expansion. CONCLUSIONS: ERAP1 activity determines surface expression of HLA-B27 FHCs and potentially promotes Th17 responses in AS through binding of HLA-B27 FHCs to KIR3DL2. Our data suggest that ERAP1 inhibition has potential for AS treatment.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Immunoglobulin Heavy Chains/metabolism , Spondylitis, Ankylosing/immunology , Th17 Cells/immunology , Adult , Aminopeptidases/genetics , Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Coculture Techniques , Female , Gene Silencing , Genotype , HLA-B27 Antigen/metabolism , Humans , Interleukin-2/biosynthesis , Male , Middle Aged , Minor Histocompatibility Antigens , Monocytes/immunology , Severity of Illness Index
3.
Ann Rheum Dis ; 73(4): 763-70, 2014 04.
Article in English | MEDLINE | ID: mdl-23625978

ABSTRACT

OBJECTIVES: Cellular expression of non-classical forms of human leukocyte antigen (HLA)-B27 (NC-B27) may be involved in spondyloarthritis (SpA) pathogenesis. We used a novel B27-specific monoclonal antibody, HD6, to ask if B27 transgenic (TG) rat splenocytes express these NC-B27 molecules. We also investigated whether B27-binding peptides could affect the expression and functional immune recognition of HD6-reactive B27 molecules. METHODS: Splenocytes from B27-TG, B7-TG and non-transgenic rats, and HLA-B27+ cell lines were stained with monoclonal antibodies recognising classical (ME-1, HLA-ABC-m1) and non-classical (HD6, HC10) B27. Cells were further cultured in the presence of HLA-B27-binding peptides, or subjected to brief low pH treatment prior to mAb staining and/or immunoprecipitation or co-culture with KIR3DL2-CD3ε-expressing Jurkat reporter cells. RESULTS: HD6-reactive molecules were detected in the majority of adult B27-TG rat splenocyte cell subsets, increasing with age and concomitant increased B27 expression. HD6 staining was inhibited by incubation with B27-binding peptides and induced by low pH treatment. HD6 staining correlated with KIR3DL2-CD3ε-expressing Jurkat reporter cell activity. Thus, IL-2 production was decreased when B27-expressing antigen-presenting cells were preincubated with B27-binding peptides, but increased following pretreatment with low pH buffer. CONCLUSIONS: Surface expression of HD6-reactive B27 molecules on B27-TG rat splenocytes is consistent with a pathogenic role for NC-B27 in SpA. Interaction of NC-B27 with innate immune receptors could be critical in SpA pathogenesis, and we show that this may be influenced by the availability and composition of the B27-binding peptide pool.


Subject(s)
Gene Dosage , HLA-B27 Antigen/metabolism , Peptides/metabolism , Spleen/immunology , Aging/immunology , Animals , Antibodies, Monoclonal/immunology , Antigen-Presenting Cells/immunology , Cell Line , Coculture Techniques , HLA-B27 Antigen/genetics , Humans , Hydrogen-Ion Concentration , Jurkat Cells , Rats , Rats, Transgenic , Receptors, KIR3DL2/metabolism , Spleen/cytology , Spondylarthritis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...