Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab Rep ; 11: 17-23, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28417071

ABSTRACT

Maple syrup urine disease (MSUD), an autosomal recessive inborn error of metabolism due to defects in the branched-chain α-ketoacid dehydrogenase (BCKD) complex, is commonly observed among other inherited metabolic disorders in the kingdom of Saudi Arabia. This report presents the results of mutation analysis of three of the four genes encoding the BCKD complex in 52 biochemically diagnosed MSUD patients originating from Saudi Arabia. The 25 mutations (20 novel) detected spanned across the entire coding regions of the BCKHDA, BCKDHB and DBT genes. There were no mutations found in the DLD gene in this cohort of patients. Prediction effects, conservation and modelling of novel mutations demonstrated that all were predicted to be disease-causing. All mutations presented in a homozygous form and we did not detect the presence of a "founder" mutation in any of three genes. In addition, prenatal molecular genetic testing was successfully carried out on chorionic villus samples or amniocenteses in 10 expectant mothers with affected children with MSUD, molecularly characterized by this study.

2.
JIMD Rep ; 29: 39-46, 2016.
Article in English | MEDLINE | ID: mdl-26615597

ABSTRACT

Defects in the human gene encoding methylmalonyl-CoA mutase enzyme (MCM) give rise to a rare autosomal recessive inherited disorder of propionate metabolism termed mut methylmalonic acidemia (MMA). Patients with mut MMA have been divided into two subgroups: mut0 with complete loss of MCM activity and mut- with residual activity in the presence of adenosylcobalamin (AdoCbl). The disease typically presents in the first weeks or months of life and is clinically characterized by recurrent vomiting, metabolic acidosis, hyperammonemia, lethargy, poor feeding, failure to thrive and neurological deficit. To better elucidate the spectrum of mutations causing mut MMA in Saudi patients, we screened a cohort of 60 Saudi patients affected by either forms of the disease for mutations in the MUT gene. A total of 13 different mutations, including seven previously reported missense changes and six novel mutations, were detected in a homozygous state except for two compound heterozygous cases. The six novel mutations identified herein consist of three nonsense, two missense and one frameshift, distributed throughout the whole protein. This study describes for the first time the clinical and mutational spectrum of mut MMA in Saudi Arabian patients.

3.
Eur J Med Genet ; 58(5): 293-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25682901

ABSTRACT

Donnai-Barrow syndrome (DBS; MIM 222448) is characterized by typical craniofacial anomalies (major hypertelorism with bulging eyes), high grade myopia, deafness and low molecular weight proteinuria. The disorder results from mutations in the low density lipoprotein receptor-related protein 2 gene LRP2 that maps to chromosome 2q31.1. LRP2 encodes megalin, a multi-ligand endocytic receptor. Herein, we describe the clinical presentation of 4 patients from 2 unrelated Saudi families. Two novel LRP2 mutations, a homozygous nonsense mutation (c.4968C>G; p.Tyr1656*) and a missense mutation (c.12062G>A; p.Cys4021Tyr), were detected in the first and second family respectively. Interestingly, intrafamilial phenotypic variability was observed in one family, while DBS features were atypical in the second family. Differential diagnosis of DBS includes several syndromes associating hypertelorism with high grade myopia, and several syndromal forms of CDH, which are briefly summarized in this study.


Subject(s)
Agenesis of Corpus Callosum/genetics , Hearing Loss, Sensorineural/genetics , Hernias, Diaphragmatic, Congenital/genetics , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Myopia/genetics , Proteinuria/genetics , Renal Tubular Transport, Inborn Errors/genetics , Adolescent , Agenesis of Corpus Callosum/metabolism , Child , Child, Preschool , Codon, Nonsense , DNA Mutational Analysis , Female , Gene Expression , Hearing Loss, Sensorineural/metabolism , Hernias, Diaphragmatic, Congenital/metabolism , Humans , Infant , Infant, Newborn , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Mutation, Missense , Myopia/metabolism , Proteinuria/metabolism , Renal Tubular Transport, Inborn Errors/metabolism , Young Adult
4.
JIMD Rep ; 2: 107-11, 2012.
Article in English | MEDLINE | ID: mdl-23430862

ABSTRACT

Congenital disorders of glycosylation (CDG) are an expanding group of genetic diseases affecting protein and lipid glycosylation. These disorders have a variable presentation and are individually rare. DPAGT1-CDG is a protein N-glycosylation disorder with epilepsy, development delay, severe hypotonia, and dysmorphy, reported in a single patient. Here we present the second family with DPAGT1-CDG identified through homozygosity mapping in a large consanguineous family with 18 affected infants. The patients had severe hypotonia, global developmental delay, seizures, and microcephaly but no dysmorphy. In the index case, the brain MRI revealed delayed myelination, and there was fiber type disproportion on muscle biopsy. Homozygosity mapping identified a large block of homozygosity on chromosome 11p15.5-q25 where two known CDG-I causing genes, ALG9 and DPAGT1, are located. Sequencing ALG9 did not reveal any mutations while analysis of DPAGT1 identified a novel homozygous mutation c.902G>A (p.R301H) in two affected infants. The disorder was fatal in all affected cases and mostly in early infancy.

5.
BMC Med Genet ; 12: 91, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21726435

ABSTRACT

BACKGROUND: Hearing loss is a clinically and genetically heterogeneous disorder. Mutations in the DFNB1 locus have been reported to be the most common cause of autosomal recessive non-syndromic hearing loss worldwide. Apart from DFNB1, many other loci and their underlying genes have also been identified and the basis of our study was to provide a comprehensive introduction to the delineation of the molecular basis of non-syndromic hearing loss in the Saudi Arabian population. This was performed by screening DFNB1 and to initiate prioritized linkage analysis or homozygosity mapping for a pilot number of families in which DFNB1 has been excluded. METHODS: Individuals from 130 families of Saudi Arabian tribal origin diagnosed with an autosomal recessive non-syndromic sensorineural hearing loss were screened for mutations at the DFNB1 locus by direct sequencing. If negative, genome wide linkage analysis or homozygosity mapping were performed using Affymetrix GeneChip® Human Mapping 250K/6.0 Arrays to identify regions containing any known-deafness causing genes that were subsequently sequenced. RESULTS: Our results strongly indicate that DFNB1 only accounts for 3% of non-syndromic hearing loss in the Saudi Arabian population of ethnic ancestry. Prioritized linkage analysis or homozygosity mapping in five separate families established that their hearing loss was caused by five different known-deafness causing genes thus confirming the genetic heterogeneity of this disorder in the kingdom. CONCLUSION: The overall results of this study are highly suggestive that underlying molecular basis of autosomal recessive non-syndromic deafness in Saudi Arabia is very genetically heterogeneous. In addition, we report that the preliminary results indicate that there does not seem to be any common or more prevalent loci, genes or mutations in patients with autosomal recessive non-syndromic hearing loss in patients of Saudi Arabian tribal origin.


Subject(s)
Connexins/genetics , Hearing Loss/epidemiology , Hearing Loss/genetics , Mutation , Connexin 26 , Family , Genes, Recessive , Genetic Heterogeneity , Genetic Linkage , Genetic Testing , Humans , Saudi Arabia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...