Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130954, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499125

ABSTRACT

Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.


Subject(s)
Platelet-Rich Fibrin , Simvastatin/pharmacology , Simvastatin/metabolism , Pectins/pharmacology , Pectins/metabolism , Skin/metabolism , Printing, Three-Dimensional
2.
J Biomater Sci Polym Ed ; 35(6): 823-850, 2024 04.
Article in English | MEDLINE | ID: mdl-38300323

ABSTRACT

Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.


Subject(s)
Ceramics , Graphite , Nanocomposites , Polymethyl Methacrylate , Silicates , Humans , Rats , Animals , Bone Cements , Vancomycin/pharmacology , Osteogenesis , Materials Testing
3.
Int J Pharm ; 653: 123931, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38387821

ABSTRACT

Despite the advances in medicine, wound healing is still challenging and piques the interest of biomedical engineers to design effective wound dressings using natural and artificial polymers. In present study, coaxial electrospinning was employed to fabricate core-shell nanofiber-based wound dressing, with core composed of polyacrylamide (PAAm) and shell comprising 0.5 % solution of L-Arginine (L-Arg) in aloe vera and keratin (AloKr). Aloe vera and keratin were added as natural polymers to promote angiogenesis, reduce inflammation, and provide antibacterial activity, whereas PAAm in core was used to improve the tensile properties of the wound dressing. Moreover, L-Arg was incorporated in shell to promote angiogenesis and collagen synthesis. The fiber diameter of PAAm/(AloKr/L-Arg) core-shell fibers was (93.33 ± 35.11 nm) with finer and straighter fibers and higher water holding capacity due to increased surface area to volume ratio. In terms of tensile properties, the PAAm/(AloKr/L-Arg) core-shell nanofibers with tensile strength and elastic modulus of 2.84 ± 0.27 MPa and 62.15 ± 5.32 MPa, respectively, showed the best mechanical performance compared to other nanofibers tested. Furthermore, PAAm/(AloKr/L-Arg) exhibited the highest L-Arg release (87.62 ± 3.02 %) and viability of L929 cells in vitro compared to other groups. In addition, the highest rate of in vivo full thickness wound healing was observed in PAAm/(AloKr/L-Arg) group compared to other groups. It significantly enhanced the angiogenesis, neovascularization, and cell proliferation. The prepared PAAm/(AloKr/L-Arg) core-shell nanofibrous dressing could be promising for full-thickness wound healing.


Subject(s)
Aloe , Nanofibers , Angiogenesis , Wound Healing , Polymers , Arginine , Keratins
4.
Int J Biol Macromol ; 259(Pt 1): 129159, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181905

ABSTRACT

Skin tissue is damaged by factors such as burns, physical injuries and diseases namely diabetes. Infection and non-healing of burn wounds and lack of angiogenesis in diabetic wounds lead to extensive injuries and death. Therefore, the design of wound dressings with antibacterial and restorative capabilities is very important. In this study, nanofibers (NFs) including polyurethane (PU) and hydroxypropyl methyl cellulose (HPMC) were prepared with different ratios and Mango peel extract (MPE) loaded into NFs by electrospinning method. The morphology, chemical structure, porosity, degradation, water vapor permeability, mechanical properties, wettability, antioxidant activity and some cell studies and evaluation of their antibacterial properties were investigated. The optimal mat (PU90/HPMC10) had a defect-free morphology with homogeneous NFs. Furthermore, it showed improved biodegradability, water vapor permeability and porosity compared to other Mats. All NFs were non-toxic with hydrophilic behavior in the cellular environment and had acceptable hemocompatibility. The PU90/HPMC10/20 % optimal scaffold had significantly higher cell viability and proliferation than other samples and also had a higher antibacterial ability against pathogenic bacteria S. aureus (17 mm) and E. coli (11 mm). All these findings confirm that the produced NF mats, especially those loaded with MPE, have a high potential to be used as an effective wound dressing.


Subject(s)
Diabetes Mellitus , Mangifera , Nanofibers , Nanofibers/chemistry , Hypromellose Derivatives , Steam , Escherichia coli , Staphylococcus aureus , Diabetes Mellitus/drug therapy , Anti-Bacterial Agents/chemistry , Methylcellulose
5.
Int J Biol Macromol ; 255: 128198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992930

ABSTRACT

Multi-layered wound dressings can closely mimic the hierarchical structure of the skin. Herein, a double-layer dressing material is fabricated through electrospinning, comprised of a nanofibrous structure as a healing-support layer or the bottom layer (BL) containing pectin (Pec), soy protein isolate (SPI), pomegranate peel extract (P), and a cellulose (Cel) microfiber layer as a protective/monitoring layer or top layer (TL). The formation of a fine bilayer structure was confirmed using scanning electron microscopy. Cel/Pec-SPI-P dressing showed a 60.05 % weight loss during 7 days of immersion in phosphate buffered solution. The ultimate tensile strength, elastic modulus, and elongation at break for different dressings were within the range of 3.14-3.57 MPa, 32.26-36.58 MPa, and 59.04-63.19 %, respectively. The release of SPI and phenolic compounds from dressings were measured and their antibacterial activity was evaluated. The fabricated dressing was non-cytotoxic following exposure to human keratinocyte cells. The Cel/Pec-SPI-P dressing exhibited excellent cell adhesion and migration as well as angiogenesis. More importantly, in vivo experiments on Cel/Pec-SPI-P dressings showed faster epidermal layer formation, blood vessel generation, collagen deposition, and a faster wound healing rate. Overall, it is anticipated that the Cel/Pec-SPI-P bilayer dressing facilitates wound treatment and can be a promising approach for clinical use.


Subject(s)
Nanofibers , Pomegranate , Humans , Nanofibers/chemistry , Soybean Proteins/chemistry , Cellulose/chemistry , Pectins/pharmacology , Wound Healing , Anti-Bacterial Agents/therapeutic use , Bandages , Acceleration
6.
ACS Appl Mater Interfaces ; 15(48): 55276-55286, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37990423

ABSTRACT

To overcome the drawbacks of single-layered wound dressings, bilayer dressings are now introduced as an alternative to achieve effective and long-term treatment. Here, a bilayer dressing composed of electrospun nanofibers in the bottom layer (BL) and a sponge structure as the top layer (TL) is presented. Hydrophilic poly(acrylic acid) (PAAc)-honey (Hny) with interconnected pores of 76.04 µm was prepared as the TL and keratin (Kr), Hny, and vascular endothelial growth factor (VEGF) were prepared as the BL. VEGF indicates a gradual release over 7 days, promoting angiogenesis, as proven by the chick chorioallantoic membrane assay and in vivo tissue histomorphology observation. Additionally, the fabricated dressing material indicated a satisfactory tensile profile, cytocompatibility for human keratinocyte cells, and the ability to promote cell attachment and migration. The in vivo animal model demonstrated that the full-thickness wound healed faster when it was covered with PAAc-Hny/Hny-Kr-VEGF than in other groups. Additionally, faster blood vessel formation, collagen synthetization, and epidermal layer generation were also confirmed, which have proven efficient healing acceleration in wounds treated with synthesized bilayer dressings. Our findings indicated that the fabricated material can be promising as a functional wound dressing.


Subject(s)
Honey , Nanofibers , Animals , Humans , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Keratins/pharmacology , Wound Healing , Bandages
7.
Int J Biol Macromol ; 253(Pt 2): 126779, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37683747

ABSTRACT

Wound dressing materials such as nanofiber (NF) mats have gained a lot of attention in recent years owing to their wonderful effect on accelerating the healing process and protection of wounds. In this regard, three different types of NF mats were fabricated using pure polyvinylpyrrolidone (PVP), PVP/κ-carrageenan (KG), and ursolic acid (UA) in the optimal PVP/KG ratio by electrospinning method to apply them as wound dressings. The morphology, chemical structure, degradation, porosity, mechanical properties and antioxidant activity of the produced NFs were investigated. Moreover, cell studies (e.g., cell proliferation, adhesion, and migration) and their antibacterial properties were evaluated. Adding KG and UA reduced the mean diameter size of the PVP-based NFs to ∼98 nm in the optimal sample, with defect-free morphology. The PVP/KG/UA 0.25 % exhibited the highest porosity, hydrophilicity, and degradation rate and a wound closure rate of 60 %, 2.5 times higher than that of the control group. Furthermore, this sample's proliferation and antibacterial ability were significantly higher than the other groups. These findings confirmed that the produced UA-loaded NFs have excellent properties as wound dressing.


Subject(s)
Nanofibers , Carrageenan/pharmacology , Nanofibers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Povidone , Ursolic Acid
8.
Int J Biol Macromol ; 250: 126176, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37558021

ABSTRACT

Edible films applied in food packaging must possess excellent inhibitory and mechanical properties. Protein-based films exhibit a high capacity for film formation and offer good gas barrier properties. However, they have weak mechanical and water barrier characteristics. The objective of this research was to develop active composite films based on reinforced soy protein isolate (SPI)/Kappa-carrageenan (K) with varying concentrations of bacterial cellulose nanofibrils (BCN). Increasing the BCN concentration improved the morphological, structural, mechanical, water vapor barrier, and moisture content properties. In comparison to the pure SPI film (S), the film with a high BCN concentration demonstrated a significant decrease in WS (22.98 ± 0.78 %), MC (21.72 ± 0.68 %), WVP (1.22 ± 0.14 g mm-1 S-1 Pa-1 10-10), and EAB (57.77 ± 5.25 %) properties. It should be emphasized that there was no significant alteration in the physicomechanical properties of the optimal film (SKB0.75) containing Zenian-loaded metal-organic frameworks (ZM). However, it substantially enhanced the thermal stability of this film, which can be attributed to the strong interfacial interactions between polymer chains and ZM. Furthermore, the ZM films inhibited the growth of pathogenic bacteria and increased the DPPH antioxidant activity. Thus, SKB0.75-ZM2 films can be utilized as practical components in food packaging.

9.
Int J Biol Macromol ; 248: 125969, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37494989

ABSTRACT

This study aimed to evaluate the effects of nano-gels containing ginger essential oil (GEO) (NGs) made from gelatin and carrageenan gum on ethyl cellulose/casein nano-fibers (NFs). For this purpose, the mechanical, thermal, morphological, antibacterial, antioxidant, hemocompatibility, and biocompatibility properties of the NFs were assessed. It was observed that incorporating NGs into ethyl cellulose/casein NFs improved their morphology, porosity, mechanical properties, and thermal stability. Analysis of the SEM images revealed that adding NGs resulted in NFs with appropriate morphology, devoid of beads, and smaller diameters. The NFs containing NGs exhibited favorable antioxidant properties and inhibited the growth of Escherichia coli and Staphylococcus aureus. Cell viability studies demonstrated that none of the NFs were toxic to normal cells (Human umbilical vein endothelial cells (HUVEC)) and exhibited hemocompatibility. Considering these properties, ethyl cellulose/casein NFs containing NGs and GEO can be utilized as food packaging materials.


Subject(s)
Nanofibers , Oils, Volatile , Zingiber officinale , Humans , Gelatin , Oils, Volatile/pharmacology , Carrageenan , Caseins , Nanogels , Antioxidants/pharmacology , Endothelial Cells , Anti-Bacterial Agents/pharmacology
10.
Molecules ; 28(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36985473

ABSTRACT

The goal of the current work was to create an antibacterial agent by using polycaprolactone/chitosan (PCL/CH) nanofibers loaded with Cordia myxa fruit extract (CMFE) as an antimicrobial agent for wound dressing. Several characteristics, including morphological, physicomechanical, and mechanical characteristics, surface wettability, antibacterial activity, cell viability, and in vitro drug release, were investigated. The inclusion of CMFE in PCL/CH led to increased swelling capability and maximum weight loss. The SEM images of the PCL/CH/CMFE mat showed a uniform topology free of beads and an average fiber diameter of 195.378 nm. Excellent antimicrobial activity was shown towards Escherichia coli (31.34 ± 0.42 mm), Salmonella enterica (30.27 ± 0.57 mm), Staphylococcus aureus (21.31 ± 0.17 mm), Bacillus subtilis (27.53 ± 1.53 mm), and Pseudomonas aeruginosa (22.17 ± 0.12 mm) based on the inhibition zone assay. The sample containing 5 wt% CMFE had a lower water contact angle (47 ± 3.7°), high porosity, and high swelling compared to the neat mat. The release of the 5% CMFE-loaded mat was proven to be based on anomalous non-Fickian diffusion using the Korsmeyer-Peppas model. Compared to the pure PCL membrane, the PCL-CH/CMFE membrane exhibited suitable cytocompatibility on L929 cells. In conclusion, the fabricated antimicrobial nanofibrous films demonstrated high bioavailability, with suitable properties that can be used in wound dressings.


Subject(s)
Chitosan , Cordia , Nanofibers , Fruit , Anti-Bacterial Agents/pharmacology , Polyesters/pharmacology , Bandages
SELECTION OF CITATIONS
SEARCH DETAIL
...