Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37168454

ABSTRACT

Monitoring insecticide resistance is crucial in disease-transmitting mosquitoes to allow assessment of viable candidate insecticides to use for control and to provide indication of changes in resistance. Insecticide resistance bioassays are typically performed on young female mosquitoes, yet disease is transmitted by older females, which may also have encountered insecticide multiple times during their adult life. If insecticide mortality rates increase with age directly, or indirectly via cumulative toxicity from repeated exposure, the strategy of testing young mosquitoes as the least susceptible cohort would be supported. We tested three hypotheses via examination of how age and cumulative exposure impact mortality rates to the pyrethroid deltamethrin in strains of Aedes aegypti from Jeddah, Saudi Arabia and the Cayman Islands, which show differences in resistance mechanisms. Females of different ages (5, 7, 10 and 14 days-old) were exposed using WHO tube assays to either a single dose of insecticide, or in a second experiment females (initially 5 days-old) were exposed daily over 10 days. Age only increased mortality in the Jeddah strain at 14 days-old and had no impact on the Cayman strain. This is consistent with greater impact linked to metabolic resistance in the Jeddah strain, though results from qPCR of four candidate genes, failed to provide evidence for a candidate underpinning an age-dependent change in resistance. With repeated exposure, mortality rates of surviving females decreased to very low levels, suggesting that surviving older cohorts of females may exhibit substantially lower susceptibility than young females in single exposure assays. Our results indicate that testing young females with a single insecticide exposure should capture minimum susceptibility for the majority of the population, but a small fraction of older females may prove particularly unresponsive to pyrethroid-based control measures.

2.
Parasit Vectors ; 15(1): 375, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36261845

ABSTRACT

BACKGROUND: The Aedes aegypti mosquito is the primary vector for dengue, chikungunya, yellow fever and Zika viruses worldwide. The first record of Ae. aegypti in southwestern Saudi Arabia was in 1956. However, the first outbreak and cases of dengue fever were reported in 1994, and cases have increased in recent years. Vector control for Ae. aegypti mainly uses pyrethroid insecticides in outdoor and indoor space spraying. The constant use of pyrethroids has exerted intense selection pressure for developing target-site mutations in the voltage-gated sodium channel (vgsc) gene in Ae. Aegypti against pyrethroids-mutations that have led to knockdown resistance (kdr). METHODS: Aedes aegypti field populations from five regions (Jazan, Sahil, Makkah, Jeddah and Madinah) of southwestern Saudi Arabia were genotyped for known kdr mutations in domains IIS6 and IIIS6 of the vgsc gene using polymerase chain reaction (PCR) amplification and sequencing. We estimated the frequency of kdr mutations and genotypes from Saudi Arabia as well as from other countries, Thailand, Myanmar (Southeast Asia) and Uganda (East Africa). We constructed haplotype networks to infer the evolutionary relationships of these gene regions. RESULTS: The three known kdr mutations, S989P, V1016G (IIS6) and F1534C (IIIS6), were detected in all five regions of Saudi Arabia. Interestingly, the triple homozygous wild genotype was reported for the first time in two individuals from the highlands of the Jazan region and one from the Al-Quoz, Sahil region. Overall, nine genotypes comprising four haplotypes were observed in southwestern Saudi Arabia. The median-joining haplotype networks of eight populations from Saudi Arabia, Southeast Asia and East Africa for both the IIS6 and IIIS6 domains revealed that haplotype diversity was highest in Uganda and in the Jazan and Sahil regions of Saudi Arabia, whereas haplotype diversity was low in the Jeddah, Makkah and Madinah regions. Median-joining haplotype networks of both domains indicated selection acting on the kdr-mutation containing haplotypes in Saudi Arabia. CONCLUSIONS: The presence of wild type haplotypes without any of the three kdr mutations, i.e. that are fully susceptible, in Saudi Arabia indicates that further consideration should be given to insecticide resistance management strategies that could restore pyrethroid sensitivity to the populations of Ae. aegypti in Saudi Arabia as part of an integrative vector control strategy.


Subject(s)
Aedes , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Zika Virus Infection , Zika Virus , Animals , Humans , Insecticides/pharmacology , Mosquito Vectors/genetics , Saudi Arabia , Alleles , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Voltage-Gated Sodium Channels/genetics , Mutation , Uganda , Zika Virus/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
3.
Front Public Health ; 10: 942381, 2022.
Article in English | MEDLINE | ID: mdl-36051997

ABSTRACT

Introduction: Co-infection of coronavirus disease 2019 (COVID-19) and dengue may coexist, as both viruses share similar laboratory and clinical features, making diagnosis and treatment challenging for health care professionals to prescribe, negatively impacting patient prognosis, and outcomes. Results and discussions: Both cases were positive for PCR and X-ray laboratory investigation at clinical examination, confirming COVID-19 and dengue co-infection, admission, and better management in referral hospitals are presented and discussed. The timeline provides detailed cases of situational analysis and the medical actions taken, as well as the outcomes. Conclusion: Both co-infection cases' (patients) health conditions had a poor prognosis and diagnosis and ended with undesired outcomes. Scaling up dual mosquito-vector linked viral diseases surveillance in understanding the transmission dynamics, early diagnosis, and the timely and safe monitoring of case management in clinical and hospital settings nationwide is paramount in curbing preventable co-infections and mortality.


Subject(s)
COVID-19 , Coinfection , Dengue , Animals , Coinfection/epidemiology , Dengue/diagnosis , Dengue/epidemiology , Humans , Saudi Arabia/epidemiology
4.
Infect Dis Poverty ; 11(1): 80, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35794644

ABSTRACT

The current unprecedented Monkeypox outbreaks emergence and spread on non-endemic countries has led to over 3413 laboratory confirmed cases and one death, and yet, does not constitute a public health emergency of international concern as June 23th 2022. We urgently call for collective regional and global partnership, leadership commitment and investment to rapidly strengthen and implement Monkeypox World Health Organization outbreak Preparedness and emergency response actions plans implementation against Monkeypox outbreak. Given the importance of human-animal-environment interface and transmission dynamics, fostering global and regional One Health approach partnership and multisectoral collaboration programs have timely and robust sustained investment benefits on poverty-linked Monkeypox and other emerging epidemics population-based programs, while leveraging from lessons learnt. Moving forward requires addressing priority research questions listed and closing the knowledge gaps for Monkeypox and others neglected tropical diseases roadmap implementation in vulnerable and at risk countries.


Subject(s)
Mpox (monkeypox) , Disease Outbreaks/prevention & control , Humans , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/prevention & control , Poverty , Public Health , World Health Organization
5.
Saudi J Biol Sci ; 28(1): 484-491, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33424331

ABSTRACT

Hyaluronic acid (HA) has great importance in biomedical applications. In this work, a novel nanoparticle-based method that stimulates the hyaluronic acid (HA) production by the bacteria Streptococcus equi subsp. Zooepidemicus has been reported. CNTs with diameters of 40-50 nm and lengths of about 20 mm were used at four different concentrations (0, 10, 25, 50, and 100 µg) to the bacteria and determined the mass of the produced HA in dependence on the exposure time under UV-irradiation. The results clearly showed that the exposure for one minute with low power UV light (254 nm) and 100 µg (CNTs) treatments steadily increased HA production from the control (0.062 g/L) to the highest value (0.992) g/L of HA. The incubation of the streptococci with CNTs led to an increase of the HA production by a factor of 4.23 after 300S exposure time under UV light, whereas the HA production was no significant enhancement under visible light. It is explained that the CNTs nanoparticle-stimulated increase of the HA production with the internalization of the nanoparticles by the bacteria since they "serve as co-enzymes" under induced mutation by UV-irradiation. Transformation process was carried out and showed that the major protein band of Streptococcus equi was observed in the Streptococcus DH5α. RAPD analysis indicates that the amplified DNA fragments and the percentage of polymorphism was similar between Streptococcus equi and Streptococcus DH50α. The chemical structure and molecular weight of the photoproduced HA from Streptococcus equi was similar to the chemical structure of the standard sample.

6.
Parasit Vectors ; 10(1): 161, 2017 Mar 27.
Article in English | MEDLINE | ID: mdl-28347352

ABSTRACT

BACKGROUND: Pyrethroid resistance is a threat to effective vector control of Aedes aegypti, the vector of dengue, Zika and other arboviruses, but there are many major knowledge gaps on the mechanisms of resistance. In Jeddah and Makkah, the principal dengue-endemic areas of Saudi Arabia, pyrethroids are used widely for Ae. aegypti control but information about resistance remains sparse, and the underlying genetic basis is unknown. Findings from an ongoing study in this internationally significant area are reported here. METHODS: Aedes aegypti collected from each city were raised to adults and assayed for resistance to permethrin, deltamethrin (with and without the synergist piperonyl butoxide, PBO), fenitrothion, and bendiocarb. Two fragments of the voltage-gated sodium channel (Vgsc), encompassing four previously identified mutation sites, were sequenced and subsequently genotyped to determine associations with resistance. Expression of five candidate genes (CYP9J10, CYP9J28, CYP9J32, CYP9M6, ABCB4) previously associated with pyrethroid resistance was compared between assay survivors and controls. RESULTS: Jeddah and Makkah populations exhibited resistance to multiple insecticides and a similarly high prevalence of resistance to deltamethrin compared to a resistant Cayman strain, with a significant influence of age and exposure duration on survival. PBO pre-exposure increased pyrethroid mortality significantly in the Jeddah, but not the Makkah strain. Three potentially interacting Vgsc mutations were detected: V1016G and S989P were in perfect linkage disequilibrium in each strain and strongly predicted survival, especially in the Makkah strain, but were in negative linkage disequilibrium with 1534C, though some females with the Vgsc triple mutation were detected. The candidate gene CYP9J28 was significantly over-expressed in Jeddah compared to two susceptible reference strains, but none of the candidate genes was consistently up-regulated to a significant level in the Makkah strain. CONCLUSIONS: Despite their proximity, Makkah and Jeddah exhibit significant differences in pyrethroid resistance phenotypes, with some evidence to suggest a different balance of mechanisms, for example with more impact associated with CYP450s in the Jeddah strain, and the dual kdr mutations 989P and 1016G in the more resistant Makkah strain. The results overall demonstrate a major role for paired target site mutations in pyrethroid resistance and highlight their utility for diagnostic monitoring.


Subject(s)
Aedes/drug effects , Aedes/genetics , Insecticide Resistance/genetics , Mosquito Vectors/genetics , Alleles , Animals , Dengue/prevention & control , Dengue/virology , Female , Fenitrothion/pharmacology , Genotype , Mosquito Vectors/virology , Mutation , Nitriles/pharmacology , Permethrin/pharmacology , Phenotype , Phenylcarbamates/pharmacology , Piperonyl Butoxide/pharmacology , Pyrethrins/pharmacology , Saudi Arabia
SELECTION OF CITATIONS
SEARCH DETAIL
...