Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rec ; 21(2): 315-342, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33325625

ABSTRACT

Singlet oxygen represents a form of reactive oxygen species (ROS), produced by electronic excitation of molecular triplet oxygen. In general, highly reactive oxygen-bearing molecules remain the backbone of diverse ground-breaking technologies, driving the waves of scientific development in environmental, biotechnology, materials, medical and defence sciences. Singlet oxygen has a relatively high energy of about 94 kJ/mol compared to the ground state molecular O2 and therefore initiates low-temperature oxidation of electron-rich hydrocarbons. Such reactivity of singlet oxygen has inspired a wide array of emerging applications in chemical, biochemical and combustion phenomena. This paper reviews the intrinsic properties of singlet oxygen, emphasising the physical aspects of its natural occurrences, production techniques, as well as chemical reactivity with organic fuels and contaminants. The review assembles critical scientific studies on the implications of singlet oxygen in initiating chemical reactions, identifying, and quantitating the consequential effects on combustion, fire safety, as well as on the low-temperature treatment of organic wastes and contaminants. Moreover, the content of this review appraises computational efforts, such as DFT quantum mechanical modelling, in developing mechanistic (i. e., both thermodynamic and kinetic) insights into the reaction of singlet oxygen with hydrocarbons.

2.
Phys Chem Chem Phys ; 21(1): 171-183, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30516179

ABSTRACT

Photo-degradation of organic pollutants plays an important role in their removal from the environment. This study provides an experimental and theoretical account of the reaction of singlet oxygen O2(1Δg) with the biodegradable-resistant species of phenol in an aqueous medium. The experiments combine customised LED-photoreactors, high-performance liquid chromatography (HPLC), and electron paramagnetic resonance (EPR) imaging, employing rose bengal as a sensitiser. Guided by density functional theory (DFT) calculations at the M062X level, we report the mechanism of the reaction and its kinetic model. Addition of O2(1Δg) to the phenol molecule branches into two competitive 1,4-cycloaddition and ortho ene-type routes, yielding 2,3-dioxabicyclo[2.2.2]octa-5,7-dien-1-ol (i.e., 1,4-endoperoxide 1-hydroxy-2,5-cyclohexadiene) and 2-hydroperoxycyclohexa-3,5-dien-1-one, respectively. Unimolecular rearrangements of the 1,4-endoperoxide proceed in a facile exothermic reaction to form the only experimentally detected product, para-benzoquinone. EPR revealed the nature of the oxidation intermediates and corroborated the appearance of O2(1Δg) as the only active radical participating in the photosensitised reaction. Additional experiments excluded the formation of hydroxyl (HO˙), hydroperoxyl (HO2˙), and phenoxy intermediates. We detected for the first time the para-semibenzoquinone anion (PSBQ), supporting the reaction pathway leading to the formation of para-benzoquinone. Our experiments and the water-solvation model result in the overall reaction rates of kr-solvation = 1.21 × 104 M-1 s-1 and kr = 1.14 × 104 M-1 s-1, respectively. These results have practical application to quantify the degradation of phenol in wastewater treatment.

3.
J Phys Chem A ; 121(17): 3199-3206, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28406298

ABSTRACT

Dissolved organic matter (DOM) acts as an effective photochemical sensitizer that produces the singlet delta state of molecular oxygen (O21Δg), a powerful oxidizer that removes aniline from aqueous solutions. However, the exact mode of this reaction, the p- to o-iminobenzoquinone ratio, and the selectivity of one over the other remain largely speculative. This contribution resolves these uncertainties. We report, for the first time, a comprehensive mechanistic and kinetic account of the oxidation of aniline with the singlet delta oxygen using B3LYP and M06 functionals in both gas and aqueous phases. Reaction mechanisms have been mapped out at E, H, and G scales. The 1,4-cycloaddition of O21Δg to aniline forms a 1,4-peroxide intermediate (M1), which isomerizes via a closed-shell mechanism to generate a p-iminobenzoquinone molecule. On the other hand, the O21Δg ene-type reaction forms an o-iminobenzoquinone product when the hydroperoxyl bond breaks, splitting hydroxyl from the 1,2-hydroperoxide (M3) moiety. The gas-phase model predicts the formation of both p- and o-iminobenzoquinones. In the latter model, the M1 adduct displays the selectivity of up to 96%. A water-solvation model predicts that M1 decomposes further, forming only p-iminobenzoquinone with a rate constant of k = 1.85 × 109 (L/(mol s)) at T = 313 K. These results corroborate the recent experimental findings of product concentration profile in which p-iminobenzoquinonine represents the only detected product.

4.
ACS Omega ; 1(2): 220-225, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-31457127

ABSTRACT

In this article, we argue that the primary role of isoprene is to remove the singlet delta oxygen (O2 1Δg) that forms inside plants by ultraviolet excitation rather than to provide heat protection or scavenge ozone, OH, or other reactive oxygen species (ROS) in the gas phase. By deploying a quantum chemical framework, we address for the first time the exact mode of isoprene reactions with O2 1Δg, the most prominent ROS that causes damage to leaves. Initial reactions of isoprene with O2 1Δg comprise its addition at the two terminal carbon atoms. The two primary open-shell adducts that appear in these reactions undergo 1,2-cycloaddition to generate methyl vinyl ketone and methacrolein, the sole products detected from in-house (i.e., inside of plants) oxidation of isoprene. Formation of other products, comprising the peroxy O-O bonds, is kinetically insignificant. Furthermore, these adducts are thermodynamically too unstable to diffuse outside of plants. Oxidation of isoprene with O2 1Δg does not produce new ROS (such as OH or HO2), supporting the well-documented role of isoprene as an effective ROS scavenger. Deploying a solvation model reduces the energy requirements for the primary pathways in the range of 10-56 kJ/mol. The present results indicate that plants attach significant value to the in-home protection against O2 1Δg by investing carbon and energy into the formation of isoprene, in spite of the appearance of the cytotoxic methyl vinyl ketone as one of the reaction products. (The same chemical species also form in unrelated gas-phase reactions involving isoprene and other ROS.) This finding explains the primary reason for the appearance of the dynamic biosphere-atmosphere exchange of methyl vinyl ketone.

SELECTION OF CITATIONS
SEARCH DETAIL
...