Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 272(Pt 1): 132748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821306

ABSTRACT

Neurodegenerative diseases with progressive cellular loss of the central nervous system and elusive disease etiology provide a continuous impetus to explore drug discovery programmes aiming at identifying robust and effective inhibitors of cholinesterase and monoamine oxidase enzymes. We herein present a concise library of anthranilamide derivatives involving a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction to install the diverse structural diversity required for the desired biological action. Using Ellman's method, cholinesterase inhibitory activity was performed against AChE and BuChE enzymes. In vitro assay results demonstrated that anthranilamides are potent inhibitors with remarkable potency. Compound 6k emerged as the lead candidate and dual inhibitor of both enzymes with IC50 values of 0.12 ± 0.01 and 0.49 ± 0.02 µM against AChE and BuChE, respectively. Several other compounds were found as highly potent and selective inhibitors. Anthranilamide derivatives were also tested against monoamine oxidase (A and B) enzymes using fluorometric method. In vitro data revealed compound 6h as the most potent inhibitor against MAO-A, showing an IC50 value of 0.44 ± 0.02 µM, whereas, compound 6k emerged as the top inhibitor of MAO-B with an IC50 value of 0.06 ± 0.01 µM. All the lead inhibitors were analyzed for the identification of their mechanism of action using Michaelis-Menten kinetics experiments. Compound 6k and 6h depicted a competitive mode of action against AChE and MAO-A, whereas, a non-competitive and mixed-type of inhibition was observed against BuChE and MAO-B by compounds 6k. Molecular docking analysis revealed remarkable binding affinities of the potent inhibitors with specific residues inside the active site of receptors. Furthermore, molecular dynamics simulations were performed to explore the ability of potent compounds to form energetically stable complexes with the target protein. Finally, in silico ADME calculations also demonstrated that the potent compounds exhibit promising pharmacokinetic profile, satisfying the essential criteria for drug-likeness. Altogether, the findings reported in the current work clearly suggest that the identified anthranilamide derivatives have the potential to serve as effective drug candidates for future investigations.


Subject(s)
Cholinesterase Inhibitors , Drug Design , Molecular Docking Simulation , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Neurodegenerative Diseases , ortho-Aminobenzoates , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry , Humans , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/enzymology , Structure-Activity Relationship , Drug Discovery , Cholinesterases/metabolism , Cholinesterases/chemistry , Molecular Dynamics Simulation
2.
Heliyon ; 10(4): e25624, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38380028

ABSTRACT

This study highlights the recent advancements in organic electronic materials and their potential for cost-effective optoelectronic devices. The investigation focuses on the molecular design, synthesis, and comprehensive analysis of two organic dyes, aiming to explore their suitability for optoelectronic applications. The dyes are strategically constructed with carbazole as the foundational structure, connecting two electron-withdrawing groups: barbituric acid (Cz-BA) and thiobarbituric acid (Cz-TBA). These dyes, featuring carbazole as the core and electron-withdrawing groups, demonstrate promising spectral, optical, electrochemical, thermal, and theoretical properties. They show strong potential for diverse optoelectronic applications, promising efficient light absorption and robust stability. The results endorse their suitability for practical optoelectronic systems.

3.
Materials (Basel) ; 16(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38068143

ABSTRACT

The aim of this work was to biosynthesize SnO2-decorated ZnO (ZT) nanocomposites (NCs) of different Sn content (10, 20, and 30 mol%), namely, ZT10, ZT20, and ZT30, using Olea europaea leaf aqueous extract-based phytocompounds as nanoparticle facilitating agents for application as effective photocatalyst in the removal of dyes from polluted water. The obtained ZT NCs were characterized using various techniques, including FTIR, XRD, TGA, TEM, EDS, UV-Vis, PL, and BET surface area. X-ray diffraction patterns show that rutile SnO2 and hexagonal ZnO coexist in the composites, and their crystallite size (D) is affected by the SnO2 ratio; the obtained D-values were 17.24, 19.07, 13.99, 6.45, and 12.30 nm for ZnO, SnO2, ZT10, ZT20, and ZT30, respectively. The direct band gaps of the ZT heterostructure increase with increasing SnO2 ratio (band gap = 3.10, 3.45, 3.14, 3.17, and 3.21 eV, respectively). TEM spectroscopy revealed nanorod and spherical grain morphologies of the composites, while EDS confirmed the elemental composition, the element ratio, and the composite's purity. All catalysts exhibit type III isotherm with macropore structure. The photocatalytic efficiency against cationic (methylene blue (MB), rhodamine B (RB)), and anionic (methyl orange (MO)) dyes, under sunlight, was optimal with ZT20. The results revealed almost complete degradation at 55, 65, and 55 min, respectively. Hence, it is evident that incorporating SnO2 improves the photocatalyst's performance, with an apparent optimal enhancement at 20 mol% Sn decorating ZT NCs. More interestingly, the catalyst stability and activity remained unaffected even after four activating cycles.

4.
Biomimetics (Basel) ; 8(8)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38132515

ABSTRACT

Dental resin composites (DRCs) have gained immense popularity as filling material in direct dental restorations. They are highly valued for their ability to closely resemble natural teeth and withstand harsh oral conditions. To increase the clinical performance of dental restorations, various fillers are incorporated into DRCs. Herein, the effect of incorporating pre-polymerized triethylene glycol dimethacrylate (P-TEGDMA) as a co-filler in varying proportions (0%, 2.5%, 5%, and 10% by weight) into bisphenol A-glycidyl methacrylate (BisGMA)/TEGDMA/SiO2 resin composite was investigated. The obtained DRCs were examined for morphology, rheological properties, degree of crosslinking (DC), Vickers microhardness (VMH), thermal stability, and flexural strength (FS). The results revealed that SiO2 and P-TEGDMA particles were uniformly dispersed. The introduction of P-TEGDMA particles (2.5 wt.%) into the resin composite had a remarkable effect, leading to a significant reduction (p ≤ 0.05) in complex viscosity, decreasing from 393.84 ± 21.65 Pa.s to 152.84 ± 23.94 Pa.s. As a result, the DC was significantly (p ≤ 0.05) improved from 61.76 ± 3.80% to 68.77 ± 2.31%. In addition, the composite mixture demonstrated a higher storage modulus (G') than loss modulus (G″), indicative of its predominantly elastic nature. Moreover, the thermal stability of the DRCs was improved with the addition of P-TEGDMA particles by increasing the degradation temperature from 410 °C to 440 °C. However, the VMH was negatively affected. The study suggests that P-TEGDMA particles have the potential to be used as co-fillers alongside other inorganic fillers, offering a means to fine-tune the properties of DRCs and optimize their clinical performance.

5.
ACS Omega ; 8(49): 47187-47200, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107948

ABSTRACT

A crucial role in the regulation of DNA replication is played by the highly conserved CDC kinase. The CDC7 kinase could serve as a target for therapeutic intervention in cancer. The primary heterocyclic substance is pyrazole, and its derivatives offer great potential as treatments for cancer cell lines. Here, we synthesized the two pyrazole derivatives: 4-(2-(4-chlorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-1) and 4-(2-(2,4-difluorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-2). The structural confirmation of both the compounds at the three-dimensional level is characterized using single crystal X-ray diffraction and density functional theory. Furthermore, the in silico chemical biological properties were derived using molecular docking and molecular dynamics (MD) simulations. PYRA-1 and PYRA-2 crystallize in the P-1 (a = 8.184(9), b = 14.251(13), c = 15.601(15), α = 91.57(8), ß = 97.48(9), 92.67(9), V = 1801.1(3) 3, and Z = 2) and P21/n (a = 14.8648(8), b = 8.5998(4), c = 15.5586(8), ß = 116.47(7), V = 1780.4(19) 3, and Z = 4), space groups, respectively. In both PYRA-1 and PYRA-2 compounds, C-H···O intermolecular connections are common to stabilize the crystal structure. In addition, short intermolecular interactions stabilizes with C-H···π and π-π stacking. Crystal packing analysis was quantified using Hirshfeld surface analysis resulting in C···H, O···H, and H···H contacts in PYRA-1 exhibiting more contribution than in PYRA-2. The conformational stabilities of the molecules are same in the gas and liquid phases (water and DMSO). The docking scores measured for PYRA-1 and PYRA-2 with CDC7 kinase complexes are -5.421 and -5.884 kcal/mol, respectively. The MD simulations show that PYRA-2 is a more potential inhibitor than PYRA-1 against CDC7 kinase.

6.
Antibiotics (Basel) ; 12(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998835

ABSTRACT

In order to address the challenges associated with antibiotic resistance by bacteria, two new complexes, Ni(II) and Zn(II), have been synthesized using the conventional method based on Schiff base ligand (E)-2-((5-bromothiazol-2-yl) imino) methyl) phenol. The Schiff base ligand (HL) was synthesized using salicylaldehyde and 5-(4-bromophenyl)thiazol-2-amine in both traditional and efficient, ecologically friendly, microwave-assisted procedures. The ligand and its complexes were evaluated by elemental analyses, FTIR spectroscopy, UV-Vis spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and magnetic susceptibility. The ligand and its complexes were tested for antibacterial activity against three Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus ATCC 43300 and Enterococcus faecalis ATCC 29212) and three Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 700603). The findings demonstrate the potent activity of the ligand and its complexes against selective bacteria but the Ni(II) complex with MIC values ranging from 1.95 to 7.81 µg/mL outperformed all other compounds, including the widely used antibiotic Streptomycin. Furthermore, the docking study provided evidence supporting the validity of the antimicrobial results, since the Ni complex showed superior binding affinity against to E. coli NAD synthetase, which had a docking score (-7.61 kcal/mol).

7.
Biomimetics (Basel) ; 8(7)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37999152

ABSTRACT

A new eugenyl dimethacrylated monomer (symbolled BisMEP) has recently been synthesized. It showed promising viscosity and polymerizability as resin for dental composite. As a new monomer, BisMEP must be assessed further; thus, various physical, chemical, and mechanical properties have to be investigated. In this work, the aim was to investigate the potential use of BisMEP in place of the BisGMA matrix of resin-based composites (RBCs), totally or partially. Therefore, a list of model composites (CEa0, CEa25, CEa50, and CEa100) were prepared, which made up of 66 wt% synthesized silica fillers and 34 wt% organic matrices (BisGMA and TEGDMA; 1:1 wt/wt), while the novel BisMEP monomer has replaced the BisGMA content as 0.0, 25, 50, and 100 wt%, respectively. The RBCs were analyzed for their degree of conversion (DC)-based depth of cure at 1 and 2 mm thickness (DC1 and DC2), Vickers hardness (HV), water uptake (WSP), and water solubility (WSL) properties. Data were statistically analyzed using IBM SPSS v21, and the significance level was taken as p < 0.05. The results revealed no significant differences (p > 0.05) in the DC at 1 and 2 mm depth for the same composite. No significant differences in the DC between CEa0, CEa25, and CEa50; however, the difference becomes substantial (p < 0.05) with CEa100, suggesting possible incorporation of BisMEP at low dosage. Furthermore, DC1 for CEa0-CEa50 and DC2 for CEa0-CEa25 were found to be above the proposed minimum limit DC of 55%. Statistical analysis of the HV data showed no significant difference between CEa0, CEa25, and CEa50, while the difference became statistically significant after totally replacing BisGMA with BisMEP (CEa100). Notably, no significant differences in the WSP of various composites were detected. Likewise, WSL tests revealed no significant differences between such composites. These results suggest the possible usage of BisMEP in a mixture with BisGMA with no significant adverse effect on the DC, HV, WSP, and degradation (WSL).

8.
Bioprocess Biosyst Eng ; 46(12): 1817-1824, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878183

ABSTRACT

The aim of this work was to synthesize 0.02 and 0.06 Mg-doped ZnO nanoparticles (NPs) using the aqueous extract of Plectranthus barbatus leaf. The structural integrity of the hexagonal phase was emphasized by X-ray diffraction analysis. The average crystallite size (D) of 0.02 and 0.06 Mg-doped ZnO NPs was found to be 23.83 and 26.95 nm, respectively. The scanning electron microscope images revealed a surface morphology of irregular nano-shapes of about 83 nm diameter with an elongated one-dimensional structure. The hemolysis activity demonstrated the safe nature of the synthesized materials at low doses. Antibacterial activity against S. aureus and E. coli, which assessed using the disc diffusion method, indicated that the prepared NPs could inhibit S. aureus but not E. coli. These findings suggest that the synthesized NPs could be explored for potential applications in biotechnology and medicine.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Humans , Staphylococcus aureus , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Escherichia coli , Hemolysis , Plant Extracts/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , X-Ray Diffraction , Metal Nanoparticles/chemistry
9.
Bioinorg Chem Appl ; 2023: 4166128, 2023.
Article in English | MEDLINE | ID: mdl-37780971

ABSTRACT

Nanomaterials have unique physicochemical properties compared to their bulk counterparts. Besides, biologically synthesized nanoparticles (NPs) have proven superior to other methods. This work aimed to biosynthesize zinc oxide (ZnO) NPs using an aqueous extract of Lepidium sativum seed. The obtained ZnO NPs were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and ultraviolet-visible spectroscopy. The in vitro antibacterial activity of ZnO NPs against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria was assessed using the disk diffusion technique. The hemolytic impact was quantified spectrophotometrically. The results indicated a 24.2 nm crystallite size, a hexagonal structure phase, and a 3.48 eV optical bandgap. Antibacterial studies revealed a dose-dependent response with comparable activity to the standard drug (gentamicin) and higher activity against S. aureus than E. coli, e.g., the zone of inhibition at 120 mg/mL was 23 ± 1.25 and 16 ± 1.00 mm, respectively. The hemolysis assay showed no potential harm due to ZnO NPs toward red blood cells if utilized in low doses. As a result, it could be concluded that the reported biogenic method for synthesizing ZnO NPs is promising, resulting in hemocompatible NPs and comparable bactericidal agents.

10.
Molecules ; 28(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894607

ABSTRACT

This investigation delves into the potential use of halogen bonding to enhance both the short-circuit current (JSC) and overall efficiency of dye-sensitized solar cells (DSSCs). Specifically, we synthesized two distinct dyes, SQI-F and SQI-Cl, and characterized them using FT-IR, 1HNMR, 13C NMR, and mass spectroscopy. These dyes are based on the concept of incorporating halogen atoms within unsymmetrical squaraine structures with a donor-acceptor-donor (D-A-D) configuration. This strategic design aims to achieve optimal performance within DSSCs. We conducted comprehensive assessments using DSSC devices and integrated these synthesized dyes with iodolyte electrolytes, denoted as Z-50 and Z-100. Further enhancements were achieved through the addition of CDCA. Remarkably, in the absence of CDCA, both SQI-F and SQI-Cl dyes displayed distinct photovoltaic characteristics. However, through sensitization with three equivalents of CDCA, a significant improvement in performance became evident. The peak of performance was reached with the SQI-F dye, sensitized with three equivalents of CDCA, and paired with iodolyte Z-100. This combination yielded an impressive DSSC device efficiency of 6.74%, an open-circuit voltage (VOC) of 0.694 V, and a current density (JSC) of 13.67 mA/cm2. This substantial improvement in performance can primarily be attributed to the presence of a σ-hole, which facilitates a robust interaction between the electrolyte and the dyes anchored on the TiO2 substrate. This interaction optimizes the critical dye regeneration process within the DSSCs, ultimately leading to the observed enhancement in efficiency.

11.
Molecules ; 28(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37894671

ABSTRACT

The aim of this work was to fabricate a new heterogeneous catalyst as zinc ferrite (ZF) supported on gamma-alumina (γ-Al2O3) for the conversion of cyclic ethers to the corresponding, more valuable lactones, using a solvent-free method and O2 as an oxidant. Hence, the ZF@γ-Al2O3 catalyst was prepared using a deposition-coprecipitation method, then characterized using TEM, SEM, EDS, TGA, FTIR, XRD, ICP, XPS, and BET surface area, and further applied for aerobic oxidation of cyclic ethers. The structural analysis indicated spherical, uniform ZF particles of 24 nm dispersed on the alumina support. Importantly, the incorporation of ZF into the support influenced its texture, i.e., the surface area and pore size were reduced while the pore diameter was increased. The product identification indicated lactone compound as the major product for saturated cyclic ether oxidation. For THF as a model reaction, it was found that the supported catalyst was 3.2 times more potent towards the oxidation of cyclic ethers than the unsupported one. Furthermore, the low reactivity of the six-membered ethers can be tackled by optimizing the oxidant pressure and the reaction time. In the case of unsaturated ethers, deep oxidation and polymerization reactions were competitive oxidations. Furthermore, it was found that the supported catalyst maintained good stability and catalytic activity, even after four cycles.

12.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688010

ABSTRACT

We further simplify the most 'user-friendly' potentiometric sensor for waterborne analytes, the 'extended-gate field effect transistor' (EGFET). This is accomplished using a 'bridge' design, that links two separate water pools, a 'control gate' (CG) pool and a 'floating gate' (FG) pool, by a bridge filled with agar-agar hydrogel. We show electric communication between electrodes in the pools across the gel bridge to the gate of an LND150 FET. When loading the gel bridge with a sorbent that is known to act as a sensitiser for Cu2+ water pollution, namely, the ion exchanging zeolite 'clinoptilolite', the bridged EGFET acts as a potentiometric sensor to waterborne Cu2+. We then introduce novel sensitisers into the gel bridge, the commercially available resins PurometTM MTS9140 and MTS9200, which are sorbents for the extraction of mercury (Hg2+) pollution from water. We find a response of the bridged EGFET to Hg2+ water pollution, setting a template for the rapid screening of ion exchange resins that are readily available for a wide range of harmful (or precious) metal ions. We fit the potentiometric sensor response vs. pollutant concentration characteristics to the Langmuir-Freundlich (LF) model which is discussed in context with other ion-sensor characteristics.

13.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37765030

ABSTRACT

Novel analogs of quinoline and isoindoline containing various heterocycles, such as tetrazole, triazole, pyrazole, and pyridine, were synthesized and characterized using FT-IR, NMR, and mass spectroscopy, and their antioxidant and antidiabetic activities were investigated. The previously synthesized compound 1 was utilized in conjugation with ketone-bearing tetrazole and isoindoline-1,3-dione to synthesize Schiff's bases 2 and 3. Furthermore, hydrazide 1 was treated with aryledines to provide pyrazoles 4a-c. Compound 5 was obtained by treating 1 with potassium thiocyanate, which was then cyclized in a basic solution to afford triazole 6. On the other hand, pyridine derivatives 7a-d and 8a-d were synthesized using 2-(4-acetylphenyl)isoindoline-1,3-dione via a one-pot condensation reaction with aryl aldehydes and active methylene compounds. From the antioxidant and antidiabetic studies, compound 7d showed significant antioxidant activity with an EC50 = 0.65, 0.52, and 0.93 mM in the free radical scavenging assays (DPPH, ABTS, and superoxide anion radicals). It also displayed noteworthy inhibitory activity against both enzymes α-glycosidase (IC50: 0.07 mM) and α-amylase (0.21 mM) compared to acarbose (0.09 mM α-glycosidase and 0.25 mM for α-amylase), and higher than in the other compounds. During in silico assays, compound 7d exhibited favorable binding affinities towards both α-glycosidase (-10.9 kcal/mol) and α-amylase (-9.0 kcal/mol) compared to acarbose (-8.6 kcal/mol for α-glycosidase and -6.0 kcal/mol for α-amylase). The stability of 7d was demonstrated by molecular dynamics simulations and estimations of the binding free energy throughout the simulation session (100 ns).

14.
Sci Rep ; 13(1): 12927, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558688

ABSTRACT

In this paper, tri-phase Fe2O3-MgO-CuO nanocomposites (NCs) and pure CuO, Fe2O3 and MgO nanoparticles (NPs) were prepared using sol-gel technique. The physical properties of the prepared products were examined using SEM, XRD, and UV-visible. The XRD data indicated the formation of pure CuO, Fe2O3 and MgO NPs, as well as nanocomposite formation with Fe2O3 (cubic), MgO (cubic), and CuO (monoclinic). The crystallite size of all the prepared samples was calculated via Scherrer's formula. The energy bandgap of CuO, Fe2O3 and MgO and Fe2O3-MgO-CuO NCs were computed from UV-visible spectroscopy as following 2.13, 2.29, 5.43 and 2.96 eV, respectively. The results showed that Fe2O3-MgO-CuO NCs is an alternative material for a wide range of applications as optoelectronics devices due to their outstanding properties.

15.
Front Microbiol ; 14: 1168102, 2023.
Article in English | MEDLINE | ID: mdl-37408641

ABSTRACT

Probiotics are live microorganisms with various health benefits when consumed in appropriate amounts. Fermented foods are a rich source of these beneficial organisms. This study aimed to investigate the probiotic potential of lactic acid bacteria (LAB) isolated from fermented papaya (Carica papaya L.) through in vitro methods. The LAB strains were thoroughly characterized, considering their morphological, physiological, fermentative, biochemical, and molecular properties. The LAB strain's adherence and resistance to gastrointestinal conditions, as well as its antibacterial and antioxidant capabilities, were examined. Moreover, the strains were tested for susceptibility against specific antibiotics, and safety evaluations encompassed the hemolytic assay and DNase activity. The supernatant of the LAB isolate underwent organic acid profiling (LCMS). The primary objective of this study was to assess the inhibitory activity of α-amylase and α-glucosidase enzymes, both in vitro and in silico. Gram-positive strains that were catalase-negative and carbohydrate fermenting were selected for further analysis. The LAB isolate exhibited resistance to acid bile (0.3% and 1%), phenol (0.1% and 0.4%), and simulated gastrointestinal juice (pH 3-8). It demonstrated potent antibacterial and antioxidant abilities and resistance to kanamycin, vancomycin, and methicillin. The LAB strain showed autoaggregation (83%) and adhesion to chicken crop epithelial cells, buccal epithelial cells, and HT-29 cells. Safety assessments indicated no evidence of hemolysis or DNA degradation, confirming the safety of the LAB isolates. The isolate's identity was confirmed using the 16S rRNA sequence. The LAB strain Levilactobacillus brevis RAMULAB52, derived from fermented papaya, exhibited promising probiotic properties. Moreover, the isolate demonstrated significant inhibition of α-amylase (86.97%) and α-glucosidase (75.87%) enzymes. In silico studies uncovered that hydroxycitric acid, one of the organic acids derived from the isolate, interacted with crucial amino acid residues of the target enzymes. Specifically, hydroxycitric acid formed hydrogen bonds with key amino acid residues, such as GLU233 and ASP197 in α-amylase, and ASN241, ARG312, GLU304, SER308, HIS279, PRO309, and PHE311 in α-glucosidase. In conclusion, Levilactobacillus brevis RAMULAB52, isolated from fermented papaya, possesses promising probiotic properties and exhibits potential as an effective remedy for diabetes. Its resistance to gastrointestinal conditions, antibacterial and antioxidant abilities, adhesion to different cell types, and significant inhibition of target enzymes make it a valuable candidate for further research and potential application in the field of probiotics and diabetes management.

16.
J Funct Biomater ; 14(6)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37367287

ABSTRACT

Resin composite mimics tooth tissues both in structure and properties, and thus, they can withstand high biting force and the harsh environmental conditions of the mouth. Various inorganic nano- and micro-fillers are commonly used to enhance these composites' properties. In this study, we adopted a novel approach by using pre-polymerized bisphenol A-glycidyl methacrylate (BisGMA) ground particles (XL-BisGMA) as fillers in a BisGMA/triethylene glycol dimethacrylate (TEGDMA) resin system in combination with SiO2 nanoparticles. The BisGMA/TEGDMA/SiO2 mixture was filled with various concentrations of XL-BisGMA (0, 2.5, 5, and 10 wt.%). The XL-BisGMA added composites were evaluated for viscosity, degree of conversion (DC), microhardness, and thermal properties. The results demonstrated that the addition of a lower concentration of XL-BisGMA particles (2.5 wt.%) significantly reduced (p ≤ 0.05) the complex viscosity from 374.6 (Pa·s) to 170.84. (Pa·s). Similarly, DC was also increased significantly (p ≤ 0.05) by the addition of 2.5 wt.% XL-BisGMA, with the pristine composite showing a DC of (62.19 ± 3.2%) increased to (69.10 ± 3.4%). Moreover, the decomposition temperature has been increased from 410 °C for the pristine composite (BT-SB0) to 450 °C for the composite with 10 wt.% of XL-BisGMA (BT-SB10). The microhardness has also been significantly reduced (p ≤ 0.05) from 47.44 HV for the pristine composite (BT-SB0) to 29.91 HV for the composite with 2.5 wt.% of XL-BisGMA (BT-SB2.5). These results suggest that a XL-BisGMA could be used to a certain percentage as a promising filler in combination with inorganic fillers to enhance the DC and flow properties of the corresponding resin-based dental composites.

17.
Polymers (Basel) ; 15(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37177131

ABSTRACT

This study aimed to assess the role of polymeric sources (polypyrrole, polyaniline, and their copolymer) of nitrogen (N)-doped activated carbons (indexed as PAnAC, PPyAC, and PnyAC, respectively) on their adsorption efficiency to remove methyl orange (MO) as a model cationic dye. The adsorbents were characterized using FTIR, SEM, TGA, elemental analysis, and surface area. The kinetic experiments were performed in batches at different MO concentrations (C0) and adsorbent dosages. The adsorption kinetic profiles of pseudo-first-order, pseudo-second-order (PSO), Elovich, intraparticle diffusion, and liquid film diffusion models were compared. The results showed a better fit to the PSO model, suggesting a chemisorption process. The adsorption capacity (qe, mg/g) was found to have increased as MO C0 increased, yet decreased as the adsorbent quantity increased. At the adsorption operating condition, including MO C0 (200 ppm) and adsorbent dose (40 mg), the calculated qe values were in the order of PAnAC (405 mg/g) > PPyAC (204 mg/g) > PnyAC (182 mg/g). This trend proved the carbon precursor's importance in the final properties of the intended carbons; elemental analysis confirmed that the more nitrogen atoms are in the activated carbon, the greater the number of active sites in the adsorbent for accommodating adsorbates. The diffusion mechanism also assumed a rate-limiting step controlled by the film and intraparticle diffusion. Therefore, such an efficient performance may support the target route's usefulness in converting nitrogenous-species waste into valuable materials.

18.
Polymers (Basel) ; 15(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36987268

ABSTRACT

This work aimed to synthesize a novel dimethacrylated-derivative of eugenol (Eg) (termed EgGAA) as potential biomaterial for certain applications such as dental fillings and adhesives. EgGAA was synthesized through a two-step reaction: (i) a mono methacrylated-eugenol (EgGMA) was produced via a ring-opening etherification of glycidyl methacrylate (GMA) with Eg; (ii) EgGMA was condensed with methacryloyl chloride into EgGAA. EgGAA was further incorporated in matrices containing BisGMA and TEGDMA (50:50 wt%) (TBEa), in which EgGAA replaced BisGMA as 0-100 wt% to get a series of unfilled resin composites (TBEa0-TBEa100), and by addition of reinforcing silica (66 wt%), a series of filled resins were also obtained (F-TBEa0-F-TBEa100). Synthesized monomers were analyzed for their structural, spectral, and thermal properties using FTIR, 1H- and 13C-NMR, mass spectrometry, TGA, and DSC. Composites rheological and DC were analyzed. The viscosity (η, Pa·s) of EgGAA (0.379) was 1533 times lower than BisGMA (581.0) and 125 times higher than TEGDMA (0.003). Rheology of unfilled resins (TBEa) indicated Newtonian fluids, with viscosity decreased from 0.164 Pa·s (TBEa0) to 0.010 Pa·s (TBEa100) when EgGAA totally replaced BisGMA. However, composites showed non-Newtonian and shear-thinning behavior, with complex viscosity (η*) being shear-independent at high angular frequencies (10-100 rad/s). The loss factor crossover points were at 45.6, 20.3, 20.4, and 25.6 rad/s, indicating a higher elastic portion for EgGAA-free composite. The DC was insignificantly decreased from 61.22% for the control to 59.85% and 59.50% for F-TBEa25 and F-TBEa50, respectively, while the difference became significant when EgGAA totally replaced BisGMA (F-TBEa100, DC = 52.54%). Accordingly, these properties could encourage further investigation of Eg-containing resin-based composite as filling materials in terms of their physicochemical, mechanical, and biological potentiality as dental material.

19.
Polymers (Basel) ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904361

ABSTRACT

The aim of this work was to assess the limiting rate of eugenol (Eg) and eugenyl-glycidyl methacrylate (EgGMA) at which the ideal degree of conversion (DC) of resin composites is achieved. For this, two series of experimental composites, containing, besides reinforcing silica and a photo-initiator system, either EgGMA or Eg molecules at 0-6.8 wt% per resin matrix, principally consisting of urethane dimethacrylate (50 wt% per composite), were prepared and denoted as UGx and UEx, where x refers to the EgGMA or Eg wt% in the composite, respectively. Disc-shaped specimens (5 × 1 mm) were fabricated, photocured for 60 s, and analyzed for their Fourier transform infrared spectra before and after curing. The results revealed concentration-dependent DC, increased from 56.70% (control; UG0 = UE0) to 63.87% and 65.06% for UG3.4 and UE0.4, respectively, then dramatically decreased with the concentration increase. The insufficiency in DC due to EgGMA and Eg incorporation, i.e., DC below the suggested clinical limit (>55%), was observed beyond UG3.4 and UE0.8. The mechanism behind such inhibition is still not fully determined; however, radicals generated by Eg may drive its free radical polymerization inhibitory activity, while the steric hindrance and reactivity of EgGMA express its traced effect at high percentages. Therefore, while Eg is a severe inhibitor for radical polymerization, EgGMA is safer and can be used to benefit resin-based composites when used at a low percentage per resin.

20.
Polymers (Basel) ; 15(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36850090

ABSTRACT

In the present work, a nitrogen-rich activated carbon (PAnAC) was prepared using polyaniline (PAn) as a precursor to represent one possible conversion of nitrogen-containing polymeric waste into a valuable adsorbent. PAnAC was fabricated under the chemical activation of KOH and a PAn precursor (in a 4:1 ratio) at 650 °C and was characterized using FTIR, SEM, BET, TGA, and CHN elemental composition. The structural characteristics support its applicability as an adsorbent material. The adsorption performance was assessed in terms of adsorption kinetics for contact time (0-180 min), methyl orange (MO) concentration (C0 = 50, 100, and 200 ppm), and adsorbent dosages (20, 40, and 80 mg per 250 mL batch). The kinetic results revealed a better fit to a pseudo-second-order, specifically nonlinear equation compared to pseudo-first-order and Elovich equations, which suggests multilayer coverage and a chemical sorption process. The adsorption capacity (qe) was optimal (405.6 mg/g) at MO C0 with PAnAC dosages of 200 ppm and 40 mg and increased as MO C0 increased but decreased as the adsorbent dosage increased. The adsorption mechanism assumes that chemisorption and the rate-controlling step are governed by mass transfer and intraparticle diffusion processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...