Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731542

ABSTRACT

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Subject(s)
Biocompatible Materials , Cell Proliferation , Polyesters , Skin , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyesters/chemistry , Animals , Mice , Cell Proliferation/drug effects , Tissue Scaffolds/chemistry , Tensile Strength , Membranes, Artificial , Cell Line , Materials Testing , Polymers/chemistry , Cell Adhesion/drug effects
2.
Polymers (Basel) ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475319

ABSTRACT

Corrosion-related damage incurs significant capital costs in many industries. In this study, an anti-corrosive pigment was synthesized by modifying calcium carbonate with sodium alginate (SA), and smart self-healing coatings were synthesized by reinforcing the anti-corrosive pigments into a polyolefin matrix. Structural changes during the synthesis of the anti-corrosive pigment were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Moreover, thermal gravimetric analysis confirmed the loading of the corrosion inhibitor, and electrochemical impedance spectroscopic analysis revealed a stable impedance value, confirming the improved corrosion resistance of the modified polyolefin coatings. The incorporation of the anticorrosive pigment into a polyolefin matrix resulted in improved pore resistance properties and capacitive behavior, indicating a good barrier property of the modified coatings. The formation of a protective film on the steel substrate reflected the adsorption of the corrosion inhibitor (SA) on the steel substrate, which further contributed to enhancing the corrosion resistance of the modified coatings. Moreover, the formation of the protective film was also analyzed by profilometry and elemental mapping analysis.

3.
Data Brief ; 53: 110096, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361976

ABSTRACT

The study involves a collection of data from the published article titled "Active sites engineered biomass-carbon as a catalyst for biodiesel production: Process optimization using RSM and life cycle assessment "Energy Conversion Management" journal. Here, the activated biochar was functionalized using 4-diazoniobenzenesulfonate to obtain sulfonic acid functionalized activated biochar. The catalyst was comprehensively characterized using XRD, FTIR, TGA, NH3-TPD, SEM-EDS, TEM, BET, and XPS analysis. Further, the obtained catalyst was applied for the transesterification of Jatropha curcas oil (JCO) to produce biodiesel. An experimental matrix was conducted using the RSM-CCD approach and the resulting data were analyzed using multiple regressions to fit a quadratic equation, where the maximum biodiesel yield achieved was 97.1 ± 0.4%, under specific reaction conditions: a reaction time of 50.3 min, a molar ratio of 22.9:1, a reaction temperature of 96.2 °C, and a catalyst loading of 7.7 wt.%. The obtained product biodiesel was analyzed using NMR and GC-MS analyzed and is reported in the above-mentioned article.

4.
ACS Omega ; 8(34): 30838-30849, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663514

ABSTRACT

A multilayered smart epoxy coating for corrosion prevention of carbon steel was developed and characterized. Toward this direction, as a first step, zinc-aluminum nitrate-layered double hydroxide (Zn/Al LDH) was synthesized using the hydrothermal crystallization technique and then loaded with dodecylamine (DOD), which was used as an inhibitor (pH-sensitive). Similarly, the synthesis of the urea-formaldehyde microcapsules (UFMCs) has been carried out using the in-situ polymerization method, and then the microcapsules (LAUFCs) were encapsulated with linalyl acetate (LA) as a self-healing agent. Finally, the loaded Zn/Al LDH (3 wt %) and modified LAUFCs (5 wt %) were reinforced into an epoxy matrix to develop a double-layer coating (DL-EP). For an exact comparison, pre-layer epoxy coatings comprising 3 wt % of the loaded Zn/Al LDH (referred to as LDH-EP), top-layer epoxy coatings comprising 5 wt % linalyl acetate urea-formaldehyde microcapsules (referred to as UFMLA COAT), and a blank epoxy coating (reference coating) were also developed. The developed epoxy coatings were characterized using various techniques such as XRD, XPS, BET, TGA, FTIR, EIS, etc. Electrochemical tests performed on the synthesized coatings indicate that the DL-EP demonstrates improved self-healing properties compared to LDH-EP and UFMLA COAT.

5.
ACS Biomater Sci Eng ; 9(5): 2376-2391, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37071118

ABSTRACT

Currently, permanent vascular stents are fabricated using titanium and stainless steel implants that are nondegradable and offer high stability, but they have certain disadvantages. For example, the prolonged exposition of aggressive ions in the physiological media and the existence of defects in the oxide film create conditions for corrosion to occur, thus triggering unwanted biological events and compromising the mechanical integrity of the implants. Moreover, when the implant does not need to be permanent, there is the need to submit the patient for a second surgery for implant removal. As a solution for nonpermanent implants, biodegradable magnesium alloys have been deemed a promising substitute, for example, for cardiovascular-related applications and the construction of orthopedic devices. A biodegradable magnesium alloy (Mg-2.5Zn) reinforced by zinc and eggshell was employed in this study as an environment-conscious magnesium (eco) composite (Mg-2.5Zn-xES). Disintegrated melt deposition (DMD) was used to fabricate the composite. Experimental studies were conducted to investigate the biodegradation performance of Mg-Zn alloys containing 3 and 7 wt % eggshell (ES) in simulated body fluid (SBF) at 37 °C. Different corrosion techniques were used to study the corrosion behavior of the Mg-2.5Zn-xES composites, including weight loss measurements, hydrogen evolution, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning vibrating electrode technique (SVET). Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were employed to scrutinize the corroded surfaces' morphology and composition. The outcomes indicated that Mg-2.5Zn-3ES possesses the lowest degradation activity.


Subject(s)
Alloys , Body Fluids , Animals , Humans , Alloys/chemistry , Magnesium/analysis , Magnesium/chemistry , Egg Shell , Prostheses and Implants , Body Fluids/chemistry
6.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234542

ABSTRACT

2-Methyltetrahydrofuran (MTHF) is a desirable biomass-based platform chemical with excellent potential as an ideal biofuel, green solvent, and raw material for synthesizing downstream chemicals. In this work, a series of copper nanoparticles encapsulated on SiO2 were prepared by the wet impregnation method and evaluated as efficient non-noble metal catalysts for the vapour-phase hydrogenation of γ-valerolactone (GVL) to MTHF in a fixed-bed reactor under mild reaction conditions. The obtained catalyst properties were determined by XRD, FE-SEM, TEM, UV-DRS, TPR, NH3-TPD, N2O decomposition and pore size distribution measurements. Meanwhile, the parameters/variables tuning their catalytic performance (activity, conversion, selectivity and stability) were examined. Various Cu loadings featured on the SiO2 support are essential for tuning the catalytic activity. Among the catalysts tested, a 5 wt% Cu/SiO2 catalyst showed a 97.2% MTHF selectivity with 71.9% GVL conversion, and showed a stability for 33 h time-on-stream, achieved at 260 °C and atmospheric pressure conditions. It was found that a huge dispersion of Cu metal in support, hydrogen activation ability, abundant acidic sites and surface area are all beneficial for improved MTHF selectivity.

7.
Materials (Basel) ; 8(11): 7795-7804, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-28793678

ABSTRACT

Fullerene-containing materials have the ability to store and release electrical energy. Therefore, fullerenes may ultimately find use in high-voltage equipment devices or as super capacitors for high electric energy storage due to this ease of manipulating their excellent dielectric properties and their high volume resistivity. A series of structured fullerene (C60) polymer nanocomposites were assembled using the thiol-ene click reaction, between alkyl thiols and allyl functionalized C60 derivatives. The resulting high-density C60-urethane-thiol-ene (C60-Thiol-Ene) networks possessed excellent mechanical properties. These novel networks were characterized using standard techniques, including infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). The dielectric spectra for the prepared samples were determined over a broad frequency range at room temperature using a broadband dielectric spectrometer and a semiconductor characterization system. The changes in thermo-mechanical and electrical properties of these novel fullerene-thiol-ene composite films were measured as a function of the C60 content, and samples characterized by high dielectric permittivity and low dielectric loss were produced. In this process, variations in chemical composition of the networks were correlated to performance characteristics.

8.
Childs Nerv Syst ; 24(2): 193-5, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17876591

ABSTRACT

INTRODUCTION: Hydrocephalus is one of the most common congenital anomalies affecting the central nervous system especially in developing countries for several reasons including prohibition of abortion in many countries. The technological advances in methods of intrauterine diagnosis of congenital malformation made it possible to detect early enlargement of the ventricles and diagnose hydrocephalus as early as 15 weeks of gestational age. Many trials of intrauterine shunting proved unsuccessful, mainly because of complications such as intra- or extracranial shunt migration, obstruction, infection, and malposition. CASE REPORT: The author is presenting a case of a successful ventriculo-amniotic shunt utilizing Al-Anazi ventriculo-uterine shunt, which is easy to implant. It has a one-way valve to prevent amniotic fluid backflow and special wings to prevent shunt migration, which are both relatively short and wide to reduce the possibility of malfunction and the risk of infection because there is no exposure with the external environment. CONCLUSION: Our successful trial showed that Al-Anazi ventriculo-uterine shunt might be the first step in treating congenital hydrocephalus.


Subject(s)
Cerebrospinal Fluid Shunts/methods , Fetal Diseases/surgery , Fetus/surgery , Hydrocephalus/surgery , Adult , Amniotic Fluid , Cerebrospinal Fluid Shunts/instrumentation , Female , Humans , Magnetic Resonance Imaging , Pregnancy , Prenatal Diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...