Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mol Graph Model ; 129: 108729, 2024 06.
Article in English | MEDLINE | ID: mdl-38479238

ABSTRACT

The recent discovery of superconductivity behavior in the mother BiS2-layered compounds has captivated the attention of several physicists. The crystal structure of superconductors with alternate layers of BiS2 is homologous to that of cuprates and Fe-based superconductors. The full-potential linearized augmented plane-wave (FP-LAPW) technique was utilized to investigate the electronic structures and density of states in the vicinity of the Fermi energy of SrFBiS2 and BaFBiS2 compounds under the electron carriers doping. The introduction of electron doping (carries doping) reveals that the host compounds SrFBiS2 and BaFBiS2 exhibit features indicative of superconductivity. This carrier doping of SrFBiS2 and BaFBiS2 compounds (electron-doped) has a significant impact on the lowest conduction states near the Fermi level for the emergence of the superconducting aspect. The electron doping modifies and induces changes in the electronic structures with superconducting behavior in (Ae)1.7FBiS2(Ae=Sr,Ba) compounds. A Fermi surface nesting occurred under the modification of electrons (carriers) doping in the host compounds SrFBiS2 and BaFBiS2. Furthermore, the optical characteristics of the carrier-doped SrFBiS2 and BaFBiS2 compounds are simulated. Due to the anisotropic behavior, the optical properties of these materials based on BiS2 demonstrate a pronounced polarization dependency. The starting point at zero photon energy in the infrared region is elucidated by considering the Drude features in the optical conductivity spectra of SrFBiS2 and BaFBiS2 compounds, when the electron carriers doping is applied. It was clearly noticed that the spin-orbit coupling (SOC) influences the electronic band structures, density of states, Femi surface, and optical features because of the heavy Bismuth atom, which may disclose fascinating aspects. Further, we conducted simulations to assess the thermoelectric properties of these mother compounds. The two BiS2-layered compounds could be suitable for practical thermoelectric purposes and are highlighted through assessment of electrical conductivity, thermal conductivity, Seebeck coefficient, and power factor. As a result, we propose that the mechanisms of superconducting behavior in BiS2 family may pave new avenues for investigating the field of unconventional superconductivity. It may also provide new insights into the origin of high-Tc superconductivity nature.


Subject(s)
Bismuth , Electronics , Electric Conductivity , Anisotropy , Electrons
2.
J Comput Chem ; 45(18): 1576-1586, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38516839

ABSTRACT

Lead-free double perovskites are unique materials for transport and optoelectronic applications that use clean resources to generate energy. Using first-principle computations, this study thoroughly investigates the structural, thermoelectric, and optical attributes of A2TlAgF6 (A = Rb, Cs). Tolerance factor and formation energy estimates are used to verify that these materials exist in the cubic phase. Elastic constants with high melting temperature values are ductile when evaluated for mechanical stability using the Born stability criterion. The optical absorption band is adjusted from 2 to 4 eV via band gaps of 1.88 and 1.99 eV, as indicated by band structures. Analysis of optical properties reveals perfect absorption in the visible spectrum, whole polarization, and low optical loss. Furthermore, thermoelectric properties are assessed at 300, 500, and 700 K in the range of -0.5 to 3 eV for chemical potential (µ). The materials exhibit significant improvements in the Figure of Merit scale due to their elevated electrical conductivity, Seebeck coefficient, and extremely low thermal conductivity values.

3.
J Mol Model ; 30(3): 77, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376612

ABSTRACT

CONTEXT: Hybrid halide perovskites are gaining prominence as a promising option in the advancement of photovoltaic devices. Ethylammonium-based hybrid halide perovskites have demonstrated impressive characteristics, such as a reduced band gap, enhanced stability, and non-toxic properties. In this study, we have explored the structural, electronic, optical, and thermoelectric characteristics of Ethylammonium tin chloride. We have found that Ethylammonium tin chloride (EASnCl3) is a direct wide band gap semiconductor. Additionally, we conducted calculations for various optical parameters, including the dielectric function, absorption coefficient, and refractive index, across a photon energy spectrum ranging from 0 to 7 eV. The research highlights the exceptional qualities of EASnCl3, which exhibits a high absorption coefficient and an elevated Seeback coefficient, among other favorable attributes. These findings position it as a promising material for cost-effective photovoltaic device applications, addressing concerns related to environmental stability. METHODS: Fundamental properties based on the full-potential linearized augmented plane wave (FP-LAPW) method, this computation was performed using the WIEN2k simulation code. We utilized the exchange-correlation potentials PBE-GGA and KTB-mBJ to compute the optimized structure, density of states, and band structure of the material. In order to calculate the thermoelectric properties of the material, the Boltztrap simulation tool has been used. There are several critical absorbance parameters, including the Seeback coefficient, figure of merit, power factor, electrical conductivity, and thermal conductivity, concerning their carrier concentration and chemical potential, that have been taken into consideration.

4.
RSC Adv ; 14(10): 6762-6775, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38405071

ABSTRACT

In this study, we employed density functional theory coupled with the full-potential linearized augmented plane-wave method (FP-LAPW) to investigate the structural, electronic, and magnetic properties of the Ti2FeAs alloy adopting the Hg2CuTi-type structure. Our findings demonstrate that all the examined structures exhibit ferromagnetic (FM) behaviour. By conducting electronic band structure calculations, we observed an energy gap of 0.739 eV for Ti2FeAs in the spin-down state and metallic intersections at the Fermi level in the spin-up state. These results suggest the half-metallic (HM) nature of Ti2FeAs, where the Ti-d and Fe-d electronic states play a significant role near the Fermi level. Additionally, the obtained total magnetic moments are consistent with the Slater-Pauling rule (Mtot = Ztot - 18), indicating 100% spin polarization for these compounds. To explore their optical properties, we employed the dielectric function to compute various optical parameters, including absorption spectra, energy-loss spectra, refractive index, reflectivity, and conductivity. Furthermore, various thermodynamic parameters were evaluated at different temperatures and pressures. The results obtained from the elastic parameters reveal the anisotropic and ductile nature of the Ti2FeAs compound. These findings suggest that Ti2FeAs has potential applications in temperature-tolerant devices and optoelectronic devices as a UV absorber.

5.
J Mol Model ; 29(12): 379, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978086

ABSTRACT

CONTEXT: In this study, the authors have investigated the structural, optoelectronic, thermoelectric, and thermodynamic properties of Ca2NaIO6 and Sr2NaIO6 double perovskite oxides. Both materials exhibit semiconductor behavior with direct band gaps (Eg) of 0.353 eV and 0.263 eV, respectively. Optical parameters like absorption coefficient α(ω), reflectivity R(ω), dielectric constants, and refractive index have been calculated. The most notable absorption peaks are identified at 5.52 eV (equal to 108.33 × 104 cm-1) in the case of Ca2NaIO6 and at 11.16 eV (equivalent to 118.17 × 104 cm-1) for Sr2NaIO6. These findings suggest a promising outlook for applications in optoelectronics. Moreover, their commendably low thermal conductivity and a high figure of merit, particularly at low temperatures (100 K), indicate their effectiveness as thermoelectric materials. This analysis underscores that these materials hold potential as suitable candidates for n-type doping, making them well-suited for use in thermoelectric devices. Studying thermal properties, including thermal expansion, bulk modulus, acoustic Debye temperature, entropy, and heat capacity, contributes to understanding the materials' thermodynamic stability. The titled materials are dynamically stable. The analysis of these double perovskite materials highlights their potential across various technological applications due to their advantageous structural, electronic, optical, and transport properties, offering new possibilities in material science and technology development. METHODS: The study utilized the full potential linearized augmented plane wave (FP-LAPW) method in conjunction with density functional theory within the WIEN2k simulation code. This approach is widely recognized as one of the most dependable methods for evaluating the photovoltaic characteristics of semiconducting perovskites. The thermoelectric properties were ascertained using the rigid band approach and the constant scattering time approximation, both implemented in the BoltzTraP computational code.

6.
J Mol Model ; 29(10): 329, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37775579

ABSTRACT

CONTEXT: This research paper investigates the properties and potential applications of antiperovskite materials. Antiperovskites are a class of materials with a unique crystal structure, where the central atom is surrounded by a cage of anions. We review recent research on antiperovskite-based materials for energy storage, photovoltaics, catalysis, and sensors. We discovered that these materials display direct band gap semiconductors, strong absorption in the visible (VIS), ultra-violet (UV), and near infrared regions (NIR) based on their fundamental features, which is the most admirable quality that may be found in many optoelectronic devices. Both mechanical and thermodynamic stability have been confirmed for these materials. We discovered that these materials exhibit high figures of merit through the calculation of transport properties, which makes them a promising candidate for thermoelectric devices. It is anticipated that the proposed material BiPMg3, which has a theoretical efficiency of 11.5%, will make a suitable photovoltaic absorber. This paper highlights the potential of these materials for future technological advancements. METHODS: Herein, we have used most authentic techniques to compute fundamental physical properties of these antiperovskites. Full-potential linear augmented plane wave (FP-LAPW) method has been used to investigate electronic, magnetic, optical properties, and make antiperovskites attractive for a variety of applications. In light of its implementation, we have checked the theoretical power conversion efficiency by first principles spectroscopic screening methodology, and inspect the fundamental physical parameters of antiperovskites, focusing on their potential as functional materials for energy and information technologies.

7.
J Comput Chem ; 44(32): 2442-2452, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37605480

ABSTRACT

The double perovskites are become the emerging aspirant to fulfill the demand of energy. Therefore, the optoelectronic, elastic and transport characteristics of Ba2 XMoO6 (X = Zn, Cd) are addressed systemically. The elastic constants show the mechanical stability. The nature of Ba2 ZnMoO6 is brittle and Ba2 CdMoO6 is ductile with large values of Debye temperature covalent bonding. The electronic band structures exhibit band gaps of 2.81 and 2.98 eV, which increase their importance for optoelectronic applications. The absorption of light energy, optical loss, refractive index, polarization of light energy are addressed in the energy range zero to 14 eV. Furthermore, thermoelectric characteristics are computed against chemical potentials at 300, 600, and 900 K. The chemical potential decides the p-type nature, with holes as majority carriers. The increasing temperature increases the power factor and figure of merit. Therefore, the optoelectronic and thermoelectric characteristics reveals the importance of studied DPs for energy applications.

8.
J Comput Chem ; 44(23): 1875-1883, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37224190

ABSTRACT

This article presents detailed structural, electronic, magnetic, and thermoelectric properties of two experimentally existing isostructural variant perovskite compounds Tl2 NbX6 (X = Cl, Br) with the help of first principles calculations. As per requirement of stability in the device applications, the structural and thermodynamic stabilities were, respectively verified by tolerance factor and negative formation energies. The structural parameters in ferromagnetic phase were calculated and found in close agreement with the available experimental results. The electronic nature was found as half metallic from spin polarized calculations of electronic band structures and density of states, where the semiconductor nature was found in the spin down states and metallic nature in the spin up states. The magnetic moments of both the compounds were calculated as 1 µB majorly contributed by Nb atom. The Boltzmann transport theory was implemented via BoltzTraP for calculating the spin resolved thermoelectric parameters, such as Seebeck coefficient, electronic and thermal conductivities, and figure of merit. Overall, both the compounds were found suitable for use in spintronics and spin Seebeck effect for energy applications.

9.
J Comput Chem ; 44(19): 1690-1703, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37093704

ABSTRACT

In this study, structural, electronic, optical, thermoelectric, and thermodynamics properties of vacancy-ordered double perovskites Rb2 XCl6 (X = Se, Ti) were explored theoretically. The results revealed that Rb2SeCl6 and Rb2 TiCl6 are indirect band gap (Eg ) semiconductors with Eg values of 2.95 eV, and 2.84 eV respectively. The calculated properties (phonons, elastic constant, Poisson's ratio, and Pugh's ratio) revealed that both materials are dynamically and chemically stable and can exhibit brittle (Rb2 SeCl6 ) and ductile (Rb2 TiCl6 ) nature. From the analysis of optical parameters, it was noticed that the refractive index of the materials has a value of 1.5-2.0 where light absorption was found from the visible to the ultraviolet region. The thermoelectric properties determined by using the BoltzTrap code demonstrated that at room temperature, the Figure of merit (ZT) was found to be 0.74 and 0.76 for Rb2 SeCl6 and Rb2 TiCl6 , respectively. Despite a moderate value of ZT in such materials, further studies might explore effective methods for tuning the electronic band gap and improving the thermoelectric response of the material for practical energy production applications.


Subject(s)
Inorganic Chemicals , Titanium , Calcium Compounds , Oxides
10.
RSC Adv ; 12(21): 12971-12977, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35497018

ABSTRACT

Due to the broken vertical symmetry, the Janus material possesses many extraordinary physico-chemical and mechanical properties that cannot be found in original symmetric materials. In this paper, we study in detail the structural, electronic, and transport properties of 1T Janus PdXO monolayers (X = S, Se, Te) by means of density functional theory. PdXO monolayers are observed to be stable based on the analysis of the vibrational characteristics and molecular dynamics simulations. All three PdXO structures exhibit semiconducting characteristics with indirect bandgap based on evaluations with hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). The influences of the spin-orbit coupling (SOC) on the band diagram of PdXO are strong. Particularly, when the SOC is included, PdTeO is calculated to be metallic by the HSE06+SOC approach. With high electron mobility, Janus PdXO structures have good potential for applications in future nanodevices.

11.
Sci Rep ; 11(1): 20622, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34663843

ABSTRACT

This work aims to test the effectiveness of newly developed DFT-1/2 functional in calculating the electronic and optical properties of inorganic lead halide perovskites CsPbBr3. Herein, from DFT-1/2 we have obtained the direct band gap of 2.36 eV and 3.82 eV for orthorhombic bulk and 001-surface, respectively. The calculated energy band gap is in qualitative agreement with the experimental findings. The bandgap of ultra-thin film of CsPbBr3 is found to be 3.82 eV, which is more than the expected range 1.23-3.10 eV. However, we have found that the bandgap can be reduced by increasing the surface thickness. Thus, the system under investigation looks promising for optoelectronic and photocatalysis applications, due to the bandgap matching and high optical absorption in UV-Vis (Ultra violet and visible spectrum) range of electro-magnetic(em) radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...