Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 99(5): 724-731, 2021 05.
Article in English | MEDLINE | ID: mdl-33506509

ABSTRACT

The dysfunction of microtubules (α/ß-tubulin polymers) underlies a wide range of nervous system genetic abnormalities. Defects in TBCD, a tubulin-folding cofactor, cause diseases highlighted with early-onset encephalopathy with or without neurodegeneration, intellectual disability, seizures, microcephaly and tetraparaperesis. Utilizing various molecular methods, we describe nine patients from four unrelated families with two novel exon 18 variants in TBCD exhibiting the typical neurological phenotype of the disease. Interestingly, all the investigated patients had previously unreported hematological findings in the form of neutropenia and mild degree of anemia and thrombocytopenia. In addition to delineating the neurological phenotype in several patients with TBCD variants, our study stresses on the new association of neutropenia, in particular, with the disease.


Subject(s)
Brain Diseases/blood , Brain Diseases/genetics , Microtubule-Associated Proteins/genetics , Mutation, Missense , Adult , Anemia/etiology , Brain Diseases/complications , Brain Diseases/diagnostic imaging , Child , Female , Humans , Infant , Magnetic Resonance Imaging , Male , Neutropenia/etiology , Pedigree , Thrombocytopenia/etiology , Young Adult
2.
Acta Neuropathol ; 139(3): 415-442, 2020 03.
Article in English | MEDLINE | ID: mdl-31820119

ABSTRACT

Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.


Subject(s)
Brain Diseases/genetics , Epileptic Syndromes/genetics , Genes, Essential/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Animals , Child, Preschool , Female , Humans , Infant , Male , Mutation , Pedigree , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...