Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Funct Plant Biol ; 50(4): 277-293, 2023 04.
Article in English | MEDLINE | ID: mdl-36634915

ABSTRACT

Treatments of wheat (Triticum durum L.) seeds with sonication or hydropriming may enhance seed germination and vigour in association with γ-aminobutyric acid (GABA). Therefore, the objective of this study is to examine the effect of sonication and hydropriming treatments on seed germination of wheat through the characterisation of seed germination performance, GABA shunt metabolite level (GABA, glutamate, and alanine), and the level of glutamate decarboxylase (GAD) mRNA transcription. Wheat seeds were exposed to three treatments for 0, 5, 10, 15, and 20min: (1) sonication with water; (2) sonication without water; and (3) hydropriming without sonication. Treated seeds were evaluated for germination percentage, mean time to germinate, germination rate index in the warm germination test, and seedling emergence and shoot length in the cold test. GABA shunt metabolites level (GABA, glutamate, and alanine), and the level of GAD mRNA transcription were measured for the seeds after treatments and for seedlings during germination and cold tests. Seeds treated with sonication or hydropriming treatments had a higher germination rate index (faster germination) in the standard germination test, and higher seedling emergence and shoot length in the cold test. Seeds treated with sonication or hydropriming treatments showed an enhancement in GABA shunt and their metabolites (alanine and glutamate), and GAD mRNA transcription level compared to untreated-control seeds. In conclusion, the sonication or hydropriming treatments significantly improved the germination performance of wheat and enhanced GABA metabolism to maintain the C:N metabolic balance, especially under cold stress.


Subject(s)
Germination , Triticum , Triticum/metabolism , Ultrasonics , Seeds , Seedlings , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology , Water/metabolism , Water/pharmacology , Glutamates/metabolism , Glutamates/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/pharmacology
2.
Funct Plant Biol ; 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36346967

ABSTRACT

Activation of γ-aminobutyric acid (GABA) shunt pathway and upregulation of dehydrins are involved in metabolic homeostasis and protective mechanisms against drought stress. Seed germination percentage, seedling growth, levels of GABA, alanine, glutamate, malondialdehyde (MDA), and the expression of glutamate decarboxylase (GAD) and dehydrin (dhn and wcor) genes were examined in post-germination and seedlings of four durum wheat (Triticum durum L.) cultivars in response to water holding capacity levels (80%, 50%, and 20%). Data showed a significant decrease in seed germination percentage, seedling length, fresh and dry weight, and water content as water holding capacity level was decreased. Levels of GABA, alanine, glutamate, and MDA were significantly increased with a negative correlation in post-germination and seedling stages as water holding capacity level was decreased. Prolonged exposure to drought stress increased the GAD expression that activated GABA shunt pathway especially at seedlings growth stage to maintain carbon/nitrogen balance, amino acids and carbohydrates metabolism, and plant growth regulation under drought stress. The mRNA transcripts of dhn and wcor significantly increased as water availability decreased in all wheat cultivars during the post-germination stage presumably to enhance plant tolerance to drought stress by cell membrane protection, cryoprotection of enzymes, and prevention of reactive oxygen species (ROS) accumulation. This study showed that the four durum wheat cultivars responded differently to drought stress especially during the seedling growth stage which might be connected with ROS scavenging systems and the activation of antioxidant enzymes that were associated with activation of GABA shunt pathway and the production of GABA in durum seedlings.

3.
J Water Health ; 18(6): 1124-1138, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33328381

ABSTRACT

Jordan is one of the lowest countries in the world in terms of water resources. The reuse of treated wastewater is an important alternative to supply agricultural demands for water. In Jordan, Kherbet Al-Samra wastewater treatment plant (KSWWTP) is the largest and its effluent is mainly used for irrigation purposes. In this study, bacterial contamination and mutagenic potential were evaluated in six sites, beginning with KSWWTP and ending with King Tallal Dam. The results showed high contamination with many pathogenic bacteria and coliforms. The isolated pathogenic bacteria were Salmonella sp., Shigella sp., Bacillus cereus and Staphylococcus aureus. The isolated opportunistic pathogenic bacteria were Acinetobacter lwoffii, Elizabethkingia meningosepticum, Pseudomonas fluorescens and Bacillus licheniformis. These bacteria were found in all sampling sites without a specific prevalence pattern. Differences in temperature between seasons affect total coliform and other bacterial count. All water samples showed positive mutagenic activity and high bacterial pollution. Improving the disinfection efficiency in the wastewater treatment plant is important to minimize potential toxicity and exposure of public health to pathogenic bacteria, reduce water resources' contamination and environmental pollution. Increasing effluent sampling frequency from KSWWTP is required to monitor bacterial contamination and toxicity/mutagenicity level for water safety and public health risk assessments.


Subject(s)
Wastewater , Water Purification , Acinetobacter , Jordan , Mutagens , Waste Disposal, Fluid , Water Microbiology
4.
J Plant Physiol ; 170(11): 1003-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23602379

ABSTRACT

The molecular response of plants to abiotic stresses has been considered a process mainly involved in the modulation of transcriptional activity of stress-related genes. Nevertheless, recent findings have suggested new layers of regulation and complexity. Upstream molecular mechanisms are involved in the plant response to abiotic stress. Plants gain resistance to abiotic stress by reprogramming metabolism and gene expression. GABA is proposed to be a signaling molecule involved in nitrogen metabolism, regulating the cytosolic pH, and protection against oxidative damage in response to various abiotic stresses. The aim of our study was to examine the role of the GABA shunt pathway-specific response in five wheat (Triticum aestivum L.) cultivars (Hurani 75, Sham I, Acsad 65, Um Qayes and Nodsieh) to salt and osmotic stress in terms of seed germination, seedling growth, oxidative damage (malondialdehyde (MDA) accumulation), and characterization of the glutamate decarboxylse gene (GAD) m-RNA level were determined using RT-PCR techniques. Our data showed a marked increase in GABA, MDA and GAD m-RNA levels under salt and osmotic stress in the five wheat cultivars. Um Qayes cultivar showed the highest germination percentage, GABA accumulation, and MDA level under salt and osmotic stresses. The marked increase in GAD gene expression explains the high accumulation of the GABA level under both stresses. Our results indicated that the GABA shunt is a key signaling and metabolic pathway that allows wheat to adapt to salt and osmotic stress. Based on our data, the Um Qayes wheat cultivar is the cultivar most recommended to be grown in soil with high salt and osmotic contents.


Subject(s)
Seedlings/drug effects , Seedlings/metabolism , Sodium Chloride/pharmacology , Triticum/drug effects , Triticum/metabolism , Gene Expression Regulation, Plant/drug effects , Glutamate Decarboxylase/metabolism , Malondialdehyde/metabolism , Osmotic Pressure , Plant Proteins/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Plant Physiol Biochem ; 48(8): 697-702, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20554213

ABSTRACT

Calmodulin (CaM), a calcium-regulated protein, regulates the activity of a number of key enzymes and plays important roles in cellular responses to environmental changes. The Arabidopsis thaliana genome contains nine calmodulin (CAM) genes. To understand the role of specific CAM genes in heat stress, the steady-state level of mRNA for the nine CAM genes in root and shoot tissues of seedlings grown at normal growth temperature (25 degrees C) and during heat stress at 42 degrees C for 2h was compared in T-DNA insertional mutant lines of 7 CAM genes and the wild type using gene specific primers and RT-PCR. Compared to growth at 25 degrees C, the mRNA levels of all CAM genes were up-regulated in both root and shoot after heat treatment with the notable exception of CAM5 in root and shoot, and CAM1 in shoot where the mRNA levels were reduced. At 25 degrees C all cam mutants showed varying levels of mRNA for corresponding CAM genes with the highest levels of CAM5 gene mRNA being found in cam5-1 and cam5-3. CAM5 gene mRNA was not observed in the cam5-4 allele which harbors a T-DNA insertion in exon II. The level of respective CAM gene mRNAs were reduced in all cam alleles compared to levels in wild type except for increased expression of CAM5 in roots and shoots of cam5-1 and cam5-3. Compared to wild type, the level of mRNA for all CAM genes varied in each cam mutant, but not in a systematic way. In general, any non-exonic T-DNA insertion produced a decrease in the mRNA levels of the CAM2 and CAM3 genes, and the levels of CAM gene mRNAs were the same as wild type or lower in the cam1, cam4, cam5-2, and cam6-1 non-exonic mutant alleles. However, the level of mRNA for all genes except CAM2 and CAM3 genes was up-regulated in all cam2 and cam3 alleles and in the cam5-1 and cam5-3 alleles. During heat stress at 42 degrees C the level of CAM gene mRNAs were also variable between insertional mutants, but the level of CAM1 and CAM5 gene mRNAs were consistently greater in response to heat stress in both root and shoot. These results suggest differential tissue-specific expression of CAM genes in root and shoot tissues, and specific regulation of CAM gene mRNA levels by heat. Each of the CAM genes appears to contain noncoding regions that play regulatory roles resulting in interaction between CAM genes leading to changes in specific CAM gene mRNA levels in Arabidopsis. Only exonic insertion in CAM5 gene resulted in a loss-of-function of CAM5 gene among the mutants we surveyed in this study.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Calmodulin/genetics , Gene Expression Regulation, Plant , Hot Temperature , Mutation , Gene Expression Profiling , Multigene Family , Mutagenesis, Insertional , Protein Isoforms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...