Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37626608

ABSTRACT

Depression is a psychiatric disorder that negatively affects how a person feels, thinks, and acts. Several studies have reported a positive association between vitamin D (VD) deficiency and depression. Therefore, we aimed to examine the effects of intraperitoneal injection of VD3, fluoxetine (antidepressant), and a combination of VD3 + fluoxetine on a rat model of chronic unpredictable mild stress (CUMS). A total of 40 male Wistar rats (224-296 g) were divided into five groups (n = 8 each) as follows: (1) the control group, (2) the CUMS group, (3) the CUMS group that received vitamin D (10 µg/kg), (4) the CUMS group that received fluoxetine (5 mg/kg), and (5) the CUMS group that received both vitamin D (10 µg/kg) and fluoxetine (5 mg/kg). The CUMS model was produced by exposing rats to frequent social and physical stressors for 21 days. In addition, blood samples were collected to determine corticosterone and serum VD levels. Also, behavioral tests were conducted, including the sucrose preference test (SPT), the forced swimming test (FST), the tail suspension test (TST), the open field test (OFT), and the elevated plus maze test (EPM). Our results show that VD3 had effects similar to fluoxetine on the depressive behavior of the rats when measured by three behavioral tests, namely SPT, FST, and OFT (p < 0.001). Additionally, VD3 had a protective effect against depression similar to that of fluoxetine. Corticosterone levels were lower in the CUMS group that received vitamin D and the CUMS group that received both vitamin D and fluoxetine than in the CUMS group (p < 0.000). In conclusion, VD3 has a protective effect against anxiety and depressive behaviors produced by CUMS in rats.

2.
Biomedicines ; 11(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36830976

ABSTRACT

The energy homeostasis-associated (Enho) gene, the transcript for the Adropin peptide, is usually linked to energy homeostasis, adiposity, glycemia, and insulin resistance. Studies on Enho expression in stressful conditions are lacking. This work aimed to investigate Enho mRNA expression and energy homeostasis in acute stress (AS) versus chronic unpredictable mild stress (CUMS) rat models. A total of thirty male Wistar rats (180-220 g) were fed a balanced diet with free access to water. Rats were divided into three equal groups (n = 10): (a) the normal control (NC) group; (b) the AS group, where one episode of stress for 2 h was applied; and (c) the CUMS group, in which rats were exposed to a variable program of mild stressors for 4 weeks. Energy homeostasis was analyzed by the PhenoMaster system for the automatic measuring of food intake (FI), respiratory O2 volume (VO2), CO2 volume (VCO2), respiratory quotient (RQ), and total energy expenditure (TEE). Finally, liver, whole brain, and adipose (WAT) tissue samples were collected, total RNA was prepared, and RT-PCR analysis of the Enho gene was performed. The CUMS group showed higher VO2 consumption and VCO2 production, and a higher RQ than the AS group. Furthermore, the TEE and FI were higher in the CUMS group compared to the AS group. Enho gene expression in the liver, brain, and WAT was significantly higher in the CUMS group than in the AS and NC groups. We can conclude that in the chew-fed AS rats, hypophagia was evident, with a shift in the RQ toward fat utilization, with no changes in body weight despite the increase in Enho mRNA expression in all studied tissues. In the CUMS group, the marked rise in Enho mRNA expression may have contributed to weight loss despite increased FI and TEE.

SELECTION OF CITATIONS
SEARCH DETAIL
...