Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Anal Chem ; 2019: 2926580, 2019.
Article in English | MEDLINE | ID: mdl-31781222

ABSTRACT

Recently, chromatographic techniques have the potential to be greener in order to reduce the environmental impact. In this work, a new simple, sensitive, efficient, and green analytical method based on UHPLC-MS has been developed for a quick determination of methylxanthines including caffeine, theobromine, and theophylline in tea. Under the optimum conditions, a baseline separation has been achieved within 30 seconds, using isocratic elution consisting of 90% water and only 10% acetonitrile at 0.5 mL/min flow rate (3 mL acetonitrile per hour). The mass spectrometer was operated with the SIR mode in ESI+. The developed method was found to be linear in the range of 0.03-5 µg/mL, with correlation coefficients greater than 0.9995 for the three compounds. The respective values of LOD were found to be 0.025, 0.015, and 0.01 µg/mL for caffeine, theobromine, and theophylline, respectively. The proposed assay was applied to 30 commercial tea samples of different brands. Both caffeine and theobromine were found in all tea samples with maximum concentration in sample no. 15, corresponding to 32.6 and 2.72 mg/g of caffeine and theobromine, respectively. On the contrary, theophylline was not detected at all in most samples. When compared with all previous studies that dealt with the same compounds in different matrices, the developed method was found to be the fastest, allowing high-throughput analyses with more than 100 samples/h. The results prove that the method is suitable for routine analysis of methylxanthines and to distinguish the quality of tea samples of various brands.

2.
J Chromatogr A ; 1535: 17-26, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29310872

ABSTRACT

A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m-1 for chrysene at flow rate of 0.5 µL min-1. The method showed a wide linear range (1-500 µg L-1 with R2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 µg L-1). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges.


Subject(s)
Nanotubes, Carbon/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polymethacrylic Acids/chemistry , Solid Phase Extraction/methods , Water/chemistry , Limit of Detection , Methacrylates/chemistry , Polymerization , Polymers/analysis , Reproducibility of Results , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification
3.
Article in English | MEDLINE | ID: mdl-29317894

ABSTRACT

Convolvulus austroaegyptiacus Abdallah & Sa'ad (CA) and Convolvulus pilosellifolius Desr. (CP) are commonly used in the Saudi Arabia folk medicine. They are potent in treating the ulcers and skin diseases. The lack of information about their biological activities led us to investigate the possible biological activities by determination of antibacterial and antioxidant activities of total ethanolic extracts and various fractions. Total flavonoid contents of the plants were determined by colorimetric method while total phenols were determined by using Folin-Ciocalteu method. In vitro antibacterial activity was studied against E. coli, P. aeruginosa, and B. subtilis, and the total antioxidant capacity was evaluated by radical scavenging method. IC50 were found to be 21.81, 17.62, and 3.31 µg/mL for CA, CP, and vitamin C, respectively, while the lowest MIC value of 0.25 mg/mL was recorded with CP extract against B. subtilis. Around 21 compounds are tentatively elucidated from both plants using rapid, simple, and high-resolution analytical technique for chemical profiling of natural compounds by direct analysis in real-time of flight-mass spectrometry, of which 17 were not isolated or reported previously.

4.
Phytother Res ; 29(9): 1311-1316, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26096441

ABSTRACT

Bio-guided fractionation of the total alcoholic extract of Convolvulus austro-aegyptiacus was screened for its anti-ulcerogenic activity, using an absolute-ethanol-induced ulcer model at 500 and 1000 mg/kg doses. Two compounds were isolated from the butanol extract of C. austro-aegyptiacus and identified by 1 H and 13 C nuclear magnetic resonance as scopoletin and scopolin. The isolated compounds (50 mg/kg) showed a remarkable anti-ulcerogenic activity because they exhibited control-ulcer protection by 16.7% and 90.8%, respectively. The acute toxicity study showed that the extract is highly safe; the median lethal dose (LD50) was more than 4000 mg/kg. Moreover, the obtained results were confirmed by the sub-chronic toxicity because the rats that have been administered 1000 mg/kg of the extract for 15 consecutive days showed no alteration in the liver and kidney functions. Copyright © 2015 John Wiley & Sons, Ltd.

SELECTION OF CITATIONS
SEARCH DETAIL
...