Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 484, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755526

ABSTRACT

Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.


Subject(s)
Glaucoma , Humans , Glaucoma/genetics , Glaucoma/diagnosis , Male , Female , Child , Child, Preschool , Cytochrome P-450 CYP1B1/genetics , Mutation , Infant , Genomics/methods , Pedigree , Adolescent , Forkhead Transcription Factors
2.
Genome Med ; 16(1): 46, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584274

ABSTRACT

BACKGROUND: Genome sequencing of large biobanks from under-represented ancestries provides a valuable resource for the interrogation of Mendelian disease burden at world population level, complementing small-scale familial studies. METHODS: Here, we interrogate 6045 whole genomes from Qatar-a Middle Eastern population with high consanguinity and understudied mutational burden-enrolled at the national Biobank and phenotyped for 58 clinically-relevant quantitative traits. We examine a curated set of 2648 Mendelian genes from 20 panels, annotating known and novel pathogenic variants and assessing their penetrance and impact on the measured traits. RESULTS: We find that 62.5% of participants are carriers of at least 1 known pathogenic variant relating to recessive conditions, with homozygosity observed in 1 in 150 subjects (0.6%) for which Peninsular Arabs are particularly enriched versus other ancestries (5.8-fold). On average, 52.3 loss-of-function variants were found per genome, 6.5 of which affect a known Mendelian gene. Several variants annotated in ClinVar/HGMD as pathogenic appeared at intermediate frequencies in this cohort (1-3%), highlighting Arab founder effect, while others have exceedingly high frequencies (> 5%) prompting reconsideration as benign. Furthermore, cumulative gene burden analysis revealed 56 genes having gene carrier frequency > 1/50, including 5 ACMG Tier 3 panel genes which would be candidates for adding to newborn screening in the country. Additionally, leveraging 58 biobank traits, we systematically assess the impact of novel/rare variants on phenotypes and discover 39 candidate large-effect variants associating with extreme quantitative traits. Furthermore, through rare variant burden testing, we discover 13 genes with high mutational load, including 5 with impact on traits relevant to disease conditions, including metabolic disorder and type 2 diabetes, consistent with the high prevalence of these conditions in the region. CONCLUSIONS: This study on the first phase of the growing Qatar Genome Program cohort provides a comprehensive resource from a Middle Eastern population to understand the global mutational burden in Mendelian genes and their impact on traits in seemingly healthy individuals in high consanguinity settings.


Subject(s)
Diabetes Mellitus, Type 2 , Infant, Newborn , Humans , Biological Specimen Banks , Gene Frequency , Phenotype , Homozygote
3.
Article in English | MEDLINE | ID: mdl-35732499

ABSTRACT

Mandibulofacial dysostosis with microcephaly (MFDM) is a rare genetic disorder inherited in an autosomal dominant pattern. Major characteristics include developmental delay, craniofacial malformations such as malar and mandibular hypoplasia, and ear anomalies. Here, we report a 4.5-yr-old female patient with symptoms fitting MFDM. Using whole-genome sequencing, we identified a de novo start-codon loss (c.3G > T) in the EFTUD2 We examined EFTUD2 expression in the patient by RNA sequencing and observed a notable functional consequence of the variant on gene expression in the patient. We identified a novel variant for the development of MFDM in humans. To the best of our knowledge, this is the first report of a start-codon loss in EFTUD2 associated with MFDM.


Subject(s)
Mandibulofacial Dysostosis , Microcephaly , Codon , Female , Humans , Mandibulofacial Dysostosis/diagnosis , Mandibulofacial Dysostosis/genetics , Microcephaly/genetics , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Ribonucleoprotein, U5 Small Nuclear/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...