Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Cybern ; 53(5): 2727-2740, 2023 May.
Article in English | MEDLINE | ID: mdl-35797327

ABSTRACT

Developing a computer-aided diagnostic system for detecting various skin malignancies from images has attracted many researchers. Unlike many machine-learning approaches, such as artificial neural networks, genetic programming (GP) automatically evolves models with flexible representation. GP successfully provides effective solutions using its intrinsic ability to select prominent features (i.e., feature selection) and build new features (i.e., feature construction). Existing approaches have utilized GP to construct new features from the complete set of original features and the set of operators. However, the complete set of features may contain redundant or irrelevant features that do not provide useful information for classification. This study aims to develop a two-stage GP method, where the first stage selects prominent features, and the second stage constructs new features from these selected features and operators, such as multiplication in a wrapper approach to improve the classification performance. To include local, global, texture, color, and multiscale image properties of skin images, GP selects and constructs features extracted from local binary patterns and pyramid-structured wavelet decomposition. The accuracy of this GP method is assessed using two real-world skin image datasets captured from the standard camera and specialized instruments, and compared with commonly used classification algorithms, three state of the art, and an existing embedded GP method. The results reveal that this new approach of feature selection and feature construction effectively helps improve the performance of the machine-learning classification algorithms. Unlike other black-box models, the evolved models by GP are interpretable; therefore, the proposed method can assist dermatologists to identify prominent features, which has been shown by further analysis on the evolved models.


Subject(s)
Pattern Recognition, Automated , Skin Neoplasms , Humans , Pattern Recognition, Automated/methods , Algorithms , Neural Networks, Computer , Machine Learning , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/genetics
2.
Evol Comput ; 29(3): 331-366, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33236924

ABSTRACT

The performance of image classification is highly dependent on the quality of the extracted features that are used to build a model. Designing such features usually requires prior knowledge of the domain and is often undertaken by a domain expert who, if available, is very costly to employ. Automating the process of designing such features can largely reduce the cost and efforts associated with this task. Image descriptors, such as local binary patterns, have emerged in computer vision, and aim at detecting keypoints, for example, corners, line-segments, and shapes, in an image and extracting features from those keypoints. In this article, genetic programming (GP) is used to automatically evolve an image descriptor using only two instances per class by utilising a multitree program representation. The automatically evolved descriptor operates directly on the raw pixel values of an image and generates the corresponding feature vector. Seven well-known datasets were adapted to the few-shot setting and used to assess the performance of the proposed method and compared against six handcrafted and one evolutionary computation-based image descriptor as well as three convolutional neural network (CNN) based methods. The experimental results show that the new method has significantly outperformed the competitor image descriptors and CNN-based methods. Furthermore, different patterns have been identified from analysing the evolved programs.


Subject(s)
Algorithms , Neural Networks, Computer , Computers
3.
Evol Comput ; 24(1): 143-82, 2016.
Article in English | MEDLINE | ID: mdl-25700148

ABSTRACT

In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.


Subject(s)
Pattern Recognition, Automated/methods , Artificial Intelligence , Computer Simulation , Humans , Models, Statistical , Pattern Recognition, Automated/classification , Software , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...