Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063689

ABSTRACT

The need to replace conventional fuels with renewable sources is a great challenge for the science community. H2 is a promising alternative due to its high energy density and availability. H2 generation from formic acid (FA) decomposition occurred in a batch and a packed-bed flow reactor, in mild conditions, using a 2% Pd6Zn4/HHT (high heated treated) catalyst synthesised via the sol-immobilisation method. Experimental and theoretical studies took place, and the results showed that in the batch system, the conversion was enhanced with increasing reaction temperature, while in the continuous flow system, the conversion was found to decrease due to the deactivation of the catalyst resulting from the generation of the poisoning CO. Computational fluid dynamics (CFD) studies were developed to predict the conversion profiles, which demonstrated great validation with the experimental results. The model can accurately predict the decomposition of FA as well as the deactivation that occurs in the continuous flow system. Of significance was the performance of the packed-bed flow reactor, which showed improved FA conversion in comparison to the batch reactor, potentially leading to the utilisation of continuous flow systems for future fuel cell applications for on-site H2 production.

2.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513271

ABSTRACT

Sustainable alternatives to conventional fuels have emerged recently, focusing on a hydrogen-based economy. The idea of using hydrogen (H2) as an energy carrier is very promising due to its zero-emission properties. The present study investigates the formic acid (FA) decomposition for H2 generation using a commercial 5 wt.% Pd/C catalyst. Three different 2D microreactor configurations (packed bed, single membrane, and double membrane) were studied using computational fluid dynamics (CFD). Parameters such as temperature, porosity, concentration, and flow rate of reactant were investigated. The packed bed configuration resulted in high conversions, but due to catalyst poisoning by carbon monoxide (CO), the catalytic activity decreased with time. For the single and double membrane microreactors, the same trends were observed, but the double membrane microreactor showed superior performance compared with the other configurations. Conversions higher than 80% were achieved, and even though deactivation decreased the conversion after 1 h of reaction, the selective removal of CO from the system with the use of membranes lead to an increase in the conversion afterwards. These results prove that the incorporation of membranes in the system for the separation of CO is improving the efficiency of the microreactor.

3.
Environ Manage ; 64(2): 230-244, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31230103

ABSTRACT

Over the past few decades, life cycle assessment (LCA) has been established as a critical tool for the evaluation of the environmental burdens of chemical processes and materials cycles. The increasing amount of plastic solid waste (PSW) in landfills has raised serious concern worldwide for the most effective treatment. Thermochemical post-treatment processes, such as pyrolysis, seem to be the most appropriate method to treat this type of waste in an effective manner. This is because such processes lead to the production of useful chemicals, or hydrocarbon oil of high calorific value (i.e. bio-oil in the case of pyrolysis). LCA appears to be the most appropriate tool for the process design from an environmental context. However, addressed limitations including initial assumptions, functional unit and system boundaries, as well as lack of regional database and exclusion of socio-economic aspects, may hinder the final decision. This review aims to address the benefits of pyrolysis as a method for PSW treatment and raise the limitations and gaps of conducted research via an environmental standpoint.


Subject(s)
Solid Waste , Waste Management , Conservation of Natural Resources , Plastics , Recycling , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...