Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Environ Geochem Health ; 46(8): 279, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958829

ABSTRACT

The present study focused on to determine the concentration and health risk of heavy metals (Cu, Pb, Zn, Cd, Hg, Cr) in e-waste contaminated soils collected from different provinces of Pakistan. Further, the impact of heavy metals on soil enzyme activities and microbial community was also investigated. The concentration (mg/kg) of Hg, Zn, Fe, Cu, Pb, Cd, and Cr ranged between 0-0.258, 2.284-6.587, 3.005-40.72, 8.67-36.88, 12.05-35.03, 1.03-2.43, and 33.13-60.05, respectively. The results revealed that Lahore site of Punjab province indicated more concentration of heavy metals as compared to other sites. The level of Cr at all sites whereas Hg at only two sites exceeds the World Health Organization standards (WHO) for soil. Soil enzyme activity exhibited dynamic trend among the sites. Maximum enzyme activity was observed for urease followed by phosphatase and catalase. Contamination factor (Cf), Pollution load index (PLI), and geo-accumulation index (Igeo) results showed that all the sites are highly contaminated with Cu, Cd, and Pb. Hazard index (HI) was less than 1 for children and adults suggesting non-carcinogenic health risk. Principle component analysis results depicted relation among Cr, Fr, catalase, and actinomycetes; Cd, OM, urease, and bacteria, and Pb, Cu, Zn, Hg, and phosphatase, suggesting soil enzymes and microbial community profiles were influenced by e-waste pollution. Therefore, there is a dire need to introduce sustainable e-waste recycling techniques as well as to make stringent e-waste management policies to reduce further environmental contamination.


Subject(s)
Electronic Waste , Metals, Heavy , Soil Microbiology , Soil Pollutants , Metals, Heavy/analysis , Pakistan , Soil Pollutants/analysis , Risk Assessment , Humans , Environmental Monitoring/methods , Waste Disposal Facilities , Soil/chemistry
2.
RSC Adv ; 14(28): 20032-20047, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911835

ABSTRACT

The high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries via the use of MXene interfaces are thoroughly investigated in this study. This study covers a wide range of techniques such as surface functionalization, heteroatom doping, and composite structure design for enhancing MXene interfaces. Examining challenges and potential downsides of MXene-based anodes offers a thorough overview of the current state of the field. This review encompasses recent findings and provides a thorough analysis of advantages and disadvantages of adding MXene interfaces to improve anode performance to assist researchers and practitioners working in this field. This review contributes significantly to ongoing efforts for the development of reliable and effective energy storage solutions for the future.

3.
J Mol Model ; 30(7): 197, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836952

ABSTRACT

CONTEXT: The world's energy and environmental requirements are changing due to rapid population growth and industrial growth, and solar cells can be used to meet these demands. Dye-sensitized solar cells (DSSCs) are solar cells in which energy conversion occurs via a process similar to photosynthesis in plants. DSSC development is still in its infancy. DSSCs can operate under cloudy conditions and indirect sunlight and have attracted considerable attention due to their low cost and high efficiency. We designed two metal-free TPA-based dyes (Dye2 and Dye3) based on the reference dye Mg207 (Dye1) by increasing the donor strength of the molecule, as such dyes have shown enhanced efficiency in DSSCs. Moreover, the triphenylamine (TPA) moiety has been demonstrated to be a good donor that prevents charge recombination. Intramolecular charge transfer (ICT) from the donor to acceptor moiety was found in the sensitizers, and electrons were promoted to the conduction band (CB) of the TiO2 semiconductor. The negative binding energy of the dye@TiO2 clusters indicated that dye adsorption on the semiconductor surface was stable. The double donor increased the electron injection and electronic coupling constants in Dye2 and Dye3, indicating that these newly designed dyes have superior charge injection capacity. Accordingly, the efficiencies of DSSCs with Dye2 and Dye3 were 9.77% and 9.62%, respectively, and substitution with the TPA unit at the -R1 and -R2 positions in Dye1 resulted in better power conversion compared to the parent compound (9.09%). Increased donor strength improved photovoltaic performance by increasing current density and light-harvesting efficiency. This is a good molecular design approach for preparing targeted donor- π -acceptor (D- π -A) organic dyes with high DSSC efficiency. METHODS: To predict the charge transport and optoelectronic characteristics of the TPA dyes, quantum chemical calculations were carried out using Gaussian16. The ground-state (S0) optimized geometries of the sensitizers were computed by utilizing DFT at the B3LYP/6-31G** level. The absorption spectra ( λ max) were computed by employing TD-DFT with various functionals (B3LYP, PBE1PBE, CAM-B3LYP, and BHandHLYP) in the gas and solvent (DCM) phases. Among the studied functionals, BHandHLYP was found to be best at successfully reproducing the experimental data. Thus, the absorption spectra of the newly designed dyes and dye@TiO2 were calculated at the BHandHLYP/6-31G** level. The dye@TiO2 cluster optimizations were carried out at the B3LYP/6-31G**(LANL2DZ) level.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124557, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38830332

ABSTRACT

The photophysical properties of conformationally flexible (TPA-C) and partially rigidified (Cz-C) triarylamine acids were explored in solid as well as solution state and correlated with the structure. TPA-C and Cz-C exhibited moderate solid-state fluorescence (Φf = 6.2 % (TPA-C) and 5.6 % (Cz-C)) and self-reversible mechanofluorochromism. TPA-C produced fluorescent polymorphs (TPA-C-1 and TPA-C-2) with tunable fluorescence. TPA-C-1 showed unusual carboxylic acid intermolecular interactions whereas TPA-C-2 and Cz-C showed usual carboxylic acid dimer. TPA-C exhibited strong solvent polarity dependent tunable fluorescence (Φf = 0.01 to 0.11 compared to quinine sulphate standard) but Cz-C was non-emissive in the solution state. The dual emissive TPA-C showed highly sensitive fluorescence changes in organic solvents (CH3CN, THF, DMF, EtOH) when trace amount of water was added. In CH3CN, TPA-C showed weak fluorescence at 474 nm and addition of water (1 %) exhibited significant blue shift (λmax = 416 nm). The fluorescence intensity was gradually decreased with blue shifting in DMF, THF and EtOH with water addition. Importantly, TPA-C showed drastically different fluorescence in n-propanol (n-PA) and iso-propanol (IPA). TPA-C in n-PA showed fluorescence at 408 nm that was clearly red shifted to 438 nm with 0.1 % addition of IPA. The limit of detection (LOD) of water in CH3CN, DMF, THF and EtOH by TPA-C revealed 0.02, 0.7, 0.08 and 0.77 %, respectively. The LOD of IPA sensing in n-PA is 0.05 % and indicated the very efficient sensing and distinguishing propanol isomers. Thus, simple triphenylamine acid showed excellent water sensing and propanol isomers discrimination that could be attributed to the twisted intramolecular charge transfer (TICT) formation.

5.
Sci Rep ; 14(1): 7809, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565664

ABSTRACT

Nano round polycrystalline adsorbent (NRPA) of chicken bones origin was utilize as effective adsorbent in Congo red dye removal via aqueous media. The NRPA adsorbent was prepared via thermal decomposition and its structure was investigated with the aids of Transmission Electron Microscopy, Fourier Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy, Energy Dispersive X-ray Analysis (EDX), and X-ray Diffractometer (XRD). A monophasic apatite phase was confirmed from XRD investigation, while functional groups analysis showed that NRPA possessed CO32-, PO43- and OH- absorption bands. The maximum adsorption capacities derived from Langmuir isotherm is 98.216 mg g-1. From the combined values of n from Freundlich and separation factor (RL) of Langmuir models, the adsorption of CR by NRPA is favourable. Thermodynamic values of 5.280 kJ mol-1 and 16.403 kJ mol-1 K-1 were found for ΔH° and ΔS° respectively. The entire values of ΔG° which ranges from - 35.248 to - 459.68 kJ mol-1 were all negative at different temperatures. Thus, nano polycrystalline adsorbent of chicken bone origin can serve as excellent adsorbent in Congo red dye removal from waste water.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124303, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38636429

ABSTRACT

A new deep blue emissive organic fluorophore (N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(diphenylamino)benzamide (NCDPB)) was designed and synthesized, which showed strong fluorescence both in solution and solid-state. Solid-state structural analysis of NCDPB revealed non-planar twisted molecular conformation with extended hydrogen bonding between the amide functionalities. The propeller shaped triphenylamine (TPA) and non-planar cyclohexyl unit prevented close π…π stacking and produced strong deep blue emission in the solid state (λmax = 400 nm, quantum yield (Φf) = 12.6 %). NCDPB also exhibited strong solvent polarity dependent tunable emission in solution (λmax = 402-462 nm, Φf = 1.15 (compared to quinine sulphate)). NCDPB showed reversible fluorescence switching between two fluorescence states upon mechanical crushing and heating/solvent exposure. Mechanical crushing caused red shifting of fluorescence from 400 to 447 nm and heating/solvent exposure reversed the fluorescence. Further, NCDPB also displayed off-on reversible/self-reversible fluorescence switching upon exposure to trifluoracetic acid (TFA) and NH3. The repeated fluorescence switching cycles indicated high reversibility without any significant change of fluorescence intensity. The drastically different fluorescence of NCDPB in CH3OH and EtOH was utilized to distinguish them and monitor CH3OH contamination in ethanol and benzene. It showed limit of detection (LOD) of methanol up to 0.25 % and 7 % in benzene and ethanol, respectively. The water sensitive fluorescence modulation of NCDPB in organic solvents was used to sensing water contamination in common organic solvents. Thus, integration of twisted TPA with H-bonding urea produced dual state emitting organic fluorophore with multi-responsive fluorescence switching and solvent sensing.

7.
RSC Adv ; 14(7): 4406-4415, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38312718

ABSTRACT

Nanoscale science represents a thriving field of research for environmental applications within materials science. This study focuses on the fabrication of pure and La-doped nickel oxide (NiO) nanostructures with varying concentrations (1.0, 2.0, 3.0, and 4.0 wt%) of lanthanum using a facile sol-gel technique. This study explores the structural, morphological, chemical composition, and optical characteristics of the resulting pure and La-doped NiO nanostructures. Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, UV-visible spectroscopy, and photoluminescence (PL) spectroscopy were used for material analysis. The observed trend in the energy band gap (Eg) values demonstrates a continuous decrease up to a La-doping concentration of 3 wt% in NiO. However, after this concentration (at 4.0 wt%), there is a noticeable increase in the energy band gap. At lower La-doping concentrations (up to 3 wt%), the incorporation of La ions into the NiO lattice may result in the formation of defects and oxygen vacancies. The presence of these imperfections may lead to new energy levels into the band gap, resulting in partial filling and a subsequent reduction in the band gap. Beyond a specific doping concentration (e.g., 3 wt%), excess La atoms may aggregate or cluster inside the NiO lattice. This agglomeration may cause structural distortions, strain, and disturbances in the crystal lattice, resulting in an increase in the band gap. The 3 wt% La-doped NiO sample demonstrated a notable 84% degradation efficiency of the synthesized nanomaterials coupled with its inherent stability, highlighting its dual attributes of effective pollutant removal and sustained performance. Furthermore, the cyclic stability of the optimized nanostructure is anticipated to be ∼77.42% after six cycles, suggesting promising future applications in photocatalysis.

8.
J Mol Graph Model ; 128: 108723, 2024 05.
Article in English | MEDLINE | ID: mdl-38340692

ABSTRACT

Nonlinear optical (NLO) response materials are among the smartest materials of the era and are employed to modulate the phase and frequency of the laser. The present study presents a quantum chemical framework for tailoring nitrogen/boron doped derivatives of Dihydrodibenzo [de,op]pentacene through terminal and central core modifications. The derivatives of these compounds have been designed by introducing various π-conjugated connectors as well as B/N heteroatoms in the phenalene rings. Density functional theory (DFT) methods are used to optimize the ground state molecular geometries of designed compounds, represented as 1 to 4 (phenalene derivatives) and 1-BN to 4-BN (B/N doped phenalene derivatives) at the M06-2X/6-311G* level of theory. The highest value of 116.9 × 10-24 esu and 240.2 × 10-24 esu for isotropic and anisotropic linear polarizability is shown by compound 4. Among the designed compounds, 4-BN has achieved the highest γ amplitude of 1858 × 10-36 esu owing to its unique molecular structural design. Further analysis of electronic parameters, such as electron density difference (EDD) maps, the density of states, electrostatic potentials, transition density matrix (TDM) analysis, and frontier molecular orbitals analysis (FMOs), demonstrated the more effective intramolecular charge transfer (ICT) for the best compounds, resulting in a good NLO response. The compounds were also analyzed for their potential in photovoltaic applications based on factors such as open circuit voltage values determined to be between (0.14 eV and 1.82 eV), and light harvesting efficiency (0.425-0.909).


Subject(s)
Boron , Phenalenes , Anisotropy , Electronics , Nitrogen
9.
Appl Microbiol Biotechnol ; 108(1): 71, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38194143

ABSTRACT

In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m-2), followed by Halamphora subtropica UMACC 370 (0.090 mW m-2), Synechococcus UMACC 371 (0.065 mW m-2) and Parachlorella UMACC 245 (0.017 mW m-2). The chlorophyll-a (chl-a) content was examined to have a linear positive relationship with the power density (p < 0.05). The photosynthetic performance of strains was studied using the pulse-amplitude modulation (PAM) fluorometer; parameters measured include the following: maximum quantum efficiency (Fv/Fm), alpha (α), maximum relative electron transport rate (rETRmax), photo-adaptive index (Ek) and non-photochemical quenching (NPQ). The Fv/Fm values of all strains, except Synechococcus UMACC 371, ranged between 0.37 and 0.50 during exponential and stationary growth phases, suggesting their general health during those periods. The low Fv/Fm value of Synechococcus UMACC 371 was possibly caused by the presence of background fluorescence from phycobilisomes or phycobiliproteins. Electrochemical studies via cyclic voltammetry (CV) suggest the presence of electrochemically active proteins on the cellular surface of strains on the carbon anode of the BPV platform, while morphological studies via field emission scanning electron microscope (FESEM) imaging verify the biocompatibility of the biofilms on the carbon anode. KEY POINTS: • Maximum power output of 0.108 mW m-2 is recorded by Chlorella UMACC 258 • There is a positive correlation between chl-a content and power output • Proven biocompatibility between biofilms and carbon anode sans exogenous mediators.


Subject(s)
Chlorella , Microalgae , Aquaculture , Biofilms , Carbon , Cell Cycle
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123838, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38181625

ABSTRACT

Highly sensitive nature of excited state intramolecular proton transfer (ESIPT) functionality in organic fluorophores made them potential candidates for developing environmental sensors and bioimaging applications. Herein, we report the synthesis of V-shaped Dapsone based Schiff base ESIPT derivatives (1-3) and water sensitive wide fluorescence tuning from blue to red in DMSO. Solid-state structural analysis confirmed the V-shaped molecular structure with intramolecular H-bonding and substituent dependent molecular packing in the crystal lattice. 1 showed strong solid-state fluorescence (λmax = 554 nm, Φf = 21.2 %) whereas methoxy substitution (2 and 3) produced tunable but significantly reduced fluorescence (λmax = 547 (2) and 615 nm (3), Φf = 2.1 (2) and 6.5 % (3)). Interestingly, aggregation induced emission (AIE) studies in DMSO-water mixture revealed water sensitive fluorescence tuning. The trace amount of water (less than 1 %) in DMSO converted the non-emissive 1-3 into highly emissive state due to keto tautomer formation. Further increasing water percentage produced deprotonated state of 1-3 in DMSO and enhanced the fluorescence intensity with red shifting of emission peak. At higher water fraction, 1-3 in DMSO produced aggregates and red shifted the emission with reduction of fluorescence intensity. The concentration dependent fluorescence study revealed the very low detection limit of water in DMSO. The limit of detection (LOD) of 1, 2 and 3 were 0.14, 1.04 and 0.65 % of water in DMSO. Hence, simple Schiff bases of 1-3 showed water concentration dependent keto isomer, deprotonated and aggregated state tunable fluorescence in DMSO. Further, scanning electron microscopic (SEM) studies of 1-3 showed water concentration controlled self-assembly and tunable fluorescence.

11.
ACS Omega ; 9(2): 2536-2546, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250432

ABSTRACT

Cobalt-doped zinc ferrite is a contemporary material with significant structural and magnetic characteristics. Our study explores the magnetic properties of cobalt-substituted zinc ferrite (ZnxCo1-xFe2O4), synthesized via a simple sol-gel method. By varying the cobalt ratio from 0 to 0.5, we found that zinc substitution impacts both the magnetization and lattice parameters. FTIR analysis suggested the presence of functional groups, particularly depicting an M-O stretching band, within octahedral and tetrahedral clusters. X-ray diffraction analysis confirmed the phase purity and cubic structure. The synthesized materials exhibited an average particle size of 24-75 nm. Scanning electron microscopy revealed the morphological properties, confirming the formation of truncated octahedral particles. In order to determine the stability, mass loss (%), and thermal behavior, a thermal analysis (thermogravimetric analysis (TGA)/differential thermal analysis (DTA)) was performed. The magnetic properties of the synthesized ferrites were confirmed via a vibrating sample magnetometer (VSM). Finally, the highest saturated magnetization and lowest coercivity values were observed with higher concentrations of the cobalt dopant substituting zinc. The synthesized nanomaterials have good stability as compared to other such materials and can be used for magnetization in the near future.

12.
Heliyon ; 10(1): e23524, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187254

ABSTRACT

The research article investigates the effect of incorporating the guanidinium carbonate (GuC) salt into the poly vinylpyrrolidone (PVP) and polyethylene oxide (PEO) polymer matrix. Various weight percentages of GuC enriched PVP/PEO solid polymer electrolytes (SPEs) have been prepared by the simplest solution casting process. XRD analysis revealed that the incorporation of the GuC salt led to changes in the crystalline structure of the PVP/PEO. FTIR analysis confirms the presence of guanidinium carbonate in the blended polymeric system. FESEM imaging showed the uniform and smooth surface view of the electrolytes. DSC analysis suggests that the addition of the GuC led to a decrease in the melting temperature and an increase in the crystallisation temperature. The temperature-dependent dielectric analysis showed that the presence of the organic salt led to an increase in the dielectric constant of the polymer blend. Among all the prepared electrolytes, 25 wt.% GuC added polymer electrolyte achieved a higher conductivity of 3.00764 × 10-7 S/cm. Overall, the results of the study suggest that the incorporation of the GuC salt into the PVP/PEO can lead to significant changes in the structural, thermal, and dielectric properties of the blend. These findings have potential implications for the use of PVP/PEO blends in solid state battery applications.

13.
Expert Opin Ther Targets ; 27(12): 1257-1269, 2023.
Article in English | MEDLINE | ID: mdl-38112471

ABSTRACT

INTRODUCTION: In medicinal chemistry, privileged structures have been frequently exploited as a successful template for drug discovery. Common simple scaffolds like chalcone are present in a wide range of naturally occurring chemicals. Chalcone exhibits extensive biological activity and has drawn attention in this context due to its function in the GABA receptor. Epilepsy and GABA receptors are related. It is a chronic neurological condition that affects globally. AREAS COVERED: Numerous neurological disorders, including anxiety and epilepsy, have been related to GABA, the brain's most prevalent inhibitory neurotransmitter. We go through the role of GABA receptors in anxiety and epilepsy in this review. The structure-activity relationship of chalcone and its derivatives on the GABA receptor is covered in our final section. EXPERT OPINION: GABA is a potential therapeutic target for issues associated with the nervous system. We talk about the potential effects of chalcone as a treatment for epilepsy and anxiety on the GABA receptor. Therefore, thorough research is necessary in this regard; the value of in silico tools in developing and enhancing GABA agonists is significant.


Subject(s)
Chalcone , Chalcones , Epilepsy , Humans , Receptors, GABA , Chalcone/chemistry , Chalcone/pharmacology , Epilepsy/drug therapy , gamma-Aminobutyric Acid , Receptors, GABA-A/physiology
14.
Sci Rep ; 13(1): 19896, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963905

ABSTRACT

The need for bioactive and non-toxic biomaterials is on a high demand in tissue engineering applications nowadays. Hydroxyapatite (HAp) is the chief constituent of teeth and bones in mammas. One of the major challenges with the use of HAp in engineering application is its brittleness and to overcome this, it's important to react it with a material that can enhanced it's fragility. To this end, HAp and HAp/clay nanocomposites were developed via wet chemical process to mimic natural HAp and to equally confer special properties such as mechanical properties, high surface area, crystallinity, high porosity, and biocompatibility on the biomaterial. The functional groups properties of the as-prepared nanocomposites analyzed by FT-IR showed that the HAp and clay posed reactive centers such as Al-Al-OH, Si-Si-OH, Si-O, PO43-, -OH, and Si-O-Al. The XRD results confirmed the formation of HAp/clay nanocomposite, while SEM and TEM images showed the morphologies of the prepared nanocomposites to be round shape particles. Besides, EDX result revealed the Ca/P ratio of HAp and HAp-C to be lower than that of stoichiometric ratio (1.67) which implies the presence of K, Na, Ca, Mg, Si and Al in the HAp/clay nanocomposite. The mechanical properties of the apatite were greatly enhanced by the addition of clay. The physiological behaviour of the fabricated apatite composites in saline solution showed steady increase in the values of the saline pH of the various biomolecules until day 5 and became fairly constant at day 7 with pH range of 7.30-7.38. Though the saline solution was acidic at the beginning due to dissolved carbon dioxide, the pH of the saline solution containing the nanocomposites gradually became neutral and fairly alkaline over time as a result of the presence of Lewis basis structures in the composites which helps in neutralizing the acidic solution. Furthermore, proliferation of apatites particles onto the surface of the nanocomposites was observed after treatment with simulated body fluids (SBF) media for 7 days. Thus, HAp/clay nanocomposites can be useful biomaterials in bone tissue engineering.


Subject(s)
Durapatite , Nanocomposites , Durapatite/chemistry , Clay , Spectroscopy, Fourier Transform Infrared , Saline Solution , Biocompatible Materials/chemistry , Nanocomposites/chemistry , Apatites
15.
Molecules ; 28(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894499

ABSTRACT

Significant advancements have been made in the development of CO2 reduction processes for applications such as electrosynthesis, energy storage, and environmental remediation. Several materials have demonstrated great potential in achieving high activity and selectivity for the desired reduction products. Nevertheless, these advancements have primarily been limited to small-scale laboratory settings, and the considerable technical obstacles associated with large-scale CO2 reduction have not received sufficient attention. Many of the researchers have been faced with persistent challenges in the catalytic process, primarily stemming from the low Faraday efficiency, high overpotential, and low limiting current density observed in the production of the desired target product. The highlighted materials possess the capability to transform CO2 into various oxygenates, including ethanol, methanol, and formates, as well as hydrocarbons such as methane and ethane. A comprehensive summary of the recent research progress on these discussed types of electrocatalysts is provided, highlighting the detailed examination of their electrocatalytic activity enhancement strategies. This serves as a valuable reference for the development of highly efficient electrocatalysts with different orientations. This review encompasses the latest developments in catalyst materials and cell designs, presenting the leading materials utilized for the conversion of CO2 into various valuable products. Corresponding designs of cells and reactors are also included to provide a comprehensive overview of the advancements in this field.

16.
Mar Pollut Bull ; 195: 115460, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660661

ABSTRACT

This study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G. gotyla, S. plagiostomus, and M. armatus from River Swat in Pakistan, and quantify their potential risk to children and adults in general and fisherfolk communities using multiple pollution and risk assessment approaches. The highest metal detected by inductive coupled plasma mass spectrometry (ICP-MS) was Zn, which ranged from 49.61 to 116.83 mg/kg, followed by Fe (19.25-101.33 mg/kg) > Mn (5.25-40.35 mg/kg) > Cr (3.05-14.59 mg/kg) > Ni (4.26-11.80 mg/kg) > Al (1.59-12.25 mg/kg) > Cu (1.24-8.59 mg/kg) > Pb (0.29-1.95 mg/kg) > Co (0.08-0.46 mg/kg) > Cd (0.01-0.29 mg/kg), demonstrating consistent fluctuation with the safe recommendations of global regulatory bodies. The average bioaccumulation factor (BAF) values in the examined fish species were high (BAF > 5000) for Pb, Zn, Mn, Cu, Cr, Ni, and Cd, bioaccumulate (1000 > BAF < 5000) for Co, and probable accumulative (BAF <1000) for Fe, and Al, while the overall ∑heavy metals pollution index (MPI) values were greater than one (MPI > 1) indicating sever heavy metals toxicity in G. cavia, followed by S. plagiostomus, M. armatus, G. gotyla, and T. macrolepis. The multivariate Pearson's correlation analysis identified the correlation coefficients between heavy metal pairs (NiCr, CuCr, PbCr, AlCo, CuNi, and PbNi), the hierarchical cluster analysis (CA) determined the origin by categorizing heavy metal accumulation into Cluster-A, Cluster-B, and Cluster-C, and the principal component analysis (PCA) discerned nearby weathering, mining, industrial, municipal, and agricultural activities as the potential sources of heavy metals bioaccumulation in riverine fish. As per human risk perspective, S.plagiostomus contributed significantly to the estimated daily intake (EDI) of heavy metals, followed by G.cavia > M.armatus > G.gotyla > T.macrolepis in dependent children and adults of the fisherfolk followed by the general population. The non-carcinogenic target hazard quotient (THQ) and hazard index (HI) values for heavy metal intake through fish exposure were < 1, while the carcinogenic risk (CR) for individual metal intake and the total carcinogenic risk (TCR) for cumulative Cr, Cd, and Pb intake were within the risk threshold of 10-6-10-4, suggesting an acceptable to high non-carcinogenic and carcinogenic risk for both children and adults in the fisherfolk, followed by the general population.


Subject(s)
Cadmium , Metals, Heavy , Adult , Child , Humans , Animals , Guinea Pigs , Cadmium/analysis , Rivers/chemistry , Pakistan , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Risk Assessment , Fishes
17.
Materials (Basel) ; 16(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687423

ABSTRACT

Dye-sensitized solar cells (DSSCs) have emerged as a potential candidate for third-generation thin film solar energy conversion systems because of their outstanding optoelectronic properties, cost-effectiveness, environmental friendliness, and easy manufacturing process. The electron transport layer is one of the most essential components in DSSCs since it plays a crucial role in the device's greatest performance. Silver ions as a dopant have drawn attention in DSSC device applications because of their stability under ambient conditions, decreased charge recombination, increased efficient charge transfer, and optical, structural, and electrochemical properties. Because of these concepts, herein, we report the synthesis of pristine TiO2 using a novel green modified solvothermal simplistic method. Additionally, the prepared semiconductor nanomaterials, Ag-doped TiO2 with percentages of 1, 2, 3, and 4%, were used as photoanodes to enhance the device's performance. The obtained nanomaterials were characterized using XRD, FTIR, FE-SEM, EDS, and UV-vis techniques. The average crystallite size for pristine TiO2 and Ag-doped TiO2 with percentages of 1, 2, 3, and 4% was found to be 13 nm by using the highest intensity peaks in the XRD spectra. The Ag-doped TiO2 nanomaterials exhibited excellent photovoltaic activity as compared to pristine TiO2. The incorporation of Ag could assist in successful charge transport and minimize the charge recombination process. The DSSCs showed a Jsc of 8.336 mA/cm2, a Voc of 698 mV, and an FF of 0.422 with a power conversion efficiency (PCE) of 2.45% at a Ag concentration of 4% under illumination of 100 mW/cm2 power with N719 dye, indicating an important improvement when compared to 2% Ag-doped (PCE of 0.97%) and pristine TiO2 (PCE of 0.62%).

18.
Sci Rep ; 13(1): 13990, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37633987

ABSTRACT

We propose ANN-based models to analyze and extract the internal parameters of a Schottky photodiode (SPD) without presenting them with any knowledge of the highly nonlinear thermionic emission (TE) expression of the device current. We train, evaluate and demonstrate the ML models on thirty-six private datasets from three previously published devices, which denote current responses under illumination and ambient temperature of graphene oxide (GO) doped p-Si Schottky barrier diodes (SBDs). The GO doping levels are 0%, 1%, 3%, 5%, and 10%. The illumination ranged from dark (0 mW/cm2) to 30 mW/cm2. The predictions are then made completely at the intensity of 60 mW/cm2. For each diode, some values of the barrier height ([Formula: see text]), ideality factor (n), and series resistance ([Formula: see text]) independently calculated using the Cheung-Cheung method were included in the training dataset. The predictions are done at unspecified intensities on the model development data at 80 and 100 mW/cm2, and on external data at 5% and 20% GO doping which were not part of the development dataset. The ANN achieved a mean square error and mean absolute error score below 0.003 across all datasets. This demonstrates the effective learning capabilities of the ANN models in accurately capturing the photo responses of the photodiodes and accurately predicting the internal parameters of the Schottky Barrier Diodes (SBDs), all without relying on an inherent understanding of the thermionic emission (TE) equation for SBDs. The ANN models achieved high accuracy in this process. The proposed ML models can significantly reduce analysis time in device development cycles and can be applied to other datasets in various fields.

19.
Chem Biodivers ; 20(9): e202300257, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37578300

ABSTRACT

In the presented work, a new series of three different 4-((3,5-dichloro-2-[(2/4-halobenzyl)oxy]phenyl)sulfonyl)morpholines was synthesized and the structure of these compounds were corroborated by 1 H-NMR & 13 C-NMR studies. The in vitro results established all the three compounds as potent tyrosinase inhibitors relative to the standard. The Kinetics mechanism plots established that compound 8 inhibited the enzyme non-competitively. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0025 µM. Additionally, computational techniques were used to explore electronic structures of synthesized compounds. Fully optimized geometries were further docked with tyrosinase enzyme for inhibition studies. Reasonably good binding/interaction energies and intermolecular interactions were obtained. Finally, drug likeness was also predicted using the rule of five (RO5) and Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics. It is anticipated that current experimental and computational investigations will evoke the scientific interest of the research community for the above-entitled compounds.


Subject(s)
Monophenol Monooxygenase , Sulfonamides , Molecular Structure , Structure-Activity Relationship , Sulfonamides/pharmacology , Molecular Docking Simulation , Morpholines , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Kinetics
20.
ACS Nano ; 17(13): 12903-12914, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37384815

ABSTRACT

The urgent necessity for highly sensitive diagnostic tools has been accentuated by the ongoing mpox (monkeypox) virus pandemic due to the complexity in identifying asymptomatic and presymptomatic carriers. Traditional polymerase chain reaction-based tests, despite their effectiveness, are hampered by limited specificity, expensive and bulky equipment, labor-intensive operations, and time-consuming procedures. In this study, we present a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based diagnostic platform with a surface plasmon resonance-based fiber tip (CRISPR-SPR-FT) biosensor. The compact CRISPR-SPR-FT biosensor, with a 125 µm diameter, offers high stability and portability, enabling exceptional specificity for mpox diagnosis and precise identification of samples with a fatal mutation site (L108F) in the F8L gene. The CRISPR-SPR-FT system can analyze viral double-stranded DNA from mpox virus without amplification in under 1.5 h with a limit of detection below 5 aM in plasmids and about 59.5 copies/µL when in pseudovirus-spiked blood samples. Our CRISPR-SPR-FT biosensor thus offers fast, sensitive, portable, and accurate target nucleic acid sequence detection.


Subject(s)
Biosensing Techniques , Mpox (monkeypox) , Humans , Monkeypox virus , Genotype , Mutation , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...