Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Tomography ; 7(2): 120-129, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33924342

ABSTRACT

Accurate measurement of object volumes using computed tomography is often important but can be challenging, especially for finely convoluted objects with severe marginal blurring from volume averaging. We aimed to test the accuracy of a simple method for volumetry by constructing, scanning and analyzing a phantom object with these characteristics which consisted of a cluster of small lucite beads embedded in petroleum jelly. Our method involves drawing simple regions of interest containing the entirety of the object and a portion of the surrounding material and using its density, along with the densities of pure lucite and petroleum jelly and the slice thickness to calculate the volume of the object in each slice. Comparison of our results with the object's true volume showed the technique to be highly accurate, irrespective of slice thickness, image noise, reconstruction planes, spatial resolution and variations in regions of interest. We conclude that the method can be easily used for accurate volumetry in clinical and research scans without the need for specialized volumetry computer programs.


Subject(s)
Software , Tomography, X-Ray Computed , Phantoms, Imaging , Research Design
2.
Med Phys ; 45(11): 4964-4976, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30238460

ABSTRACT

PURPOSE: The purpose of this paper was to present a method of determining the dose profile of the beam bow-tie filter (BTF) without the need for fixing the x ray tube in a position or using special instruments or dosimeters other than the ordinary types of ion chambers used for CT dosimetry (e.g., Farmer chamber). METHODS: The idea behind this method is to try to invert the integral of exposures from axial measurements by decomposing it into fractions per degree of tube rotation. Measurements of the CT tube output were taken with a full tube rotation while the chamber was fixed in air. Starting with isocenter the output measurements were performed at 1-cm interval above the isocenter. Measurements were repeated for three sizes of BTFs; small, medium, and large. Maximum fan angle per chamber position was computed and an effective fan angle was defined to account for the new angular range encountered per chamber position. Variation due to inverse-square law was isolated from each measurement and contribution from the effective fan angle was computed. Resulted profiles from this method were then compared to profiles obtained with direct measurements, when the tube was in a fixed position. Effects of over and under 360° rotation per scan on results accuracy were also investigated. RESULTS: Using the direct measurements as the gold standard, results from this method were accurate to 4% for most of the BTFs angular ranges. The average relative error in the small BTF was 1.5%. In the medium BTF, the average relative error was <3% for up to 16° fan angle. With the large BTF, the mean error was about 4% for up to 22°. The relative error appeared to increase at larger fan angles especially with the large BTF; reaching an average of about 32% for fan angles between 22° and 27.5°. CONCLUSION: The presented method is relatively easy to perform and provides BTFs profiles with reasonably good accuracy. Associated errors of >10% only appear in high angles of large and medium BTFs.


Subject(s)
Radiometry/instrumentation , Rotation
3.
Med Phys ; 44(12): 6589-6602, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28940306

ABSTRACT

PURPOSE: Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. METHODS: MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. RESULTS: Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σV of a MOSFET voltage measurement was shown to be proportional to the square root of the voltage V: σV=cV where c = 0.11 mV. A main contributor to the error in the calibration factor was the ionization chamber reading error with 5% error. The usage of a single calibration factor for all MOSFETs introduced an additional error of about 5-7%, depending on the number of MOSFETs that were used to determine the single calibration factor. The expected overall error in a high-dose region (~30 mGy) was estimated to be about 8%, compared to 6% when an individual MOSFET calibration was performed. For a low-dose region (~3 mGy), these values were 13% and 12%. CONCLUSIONS: A MOSFET calibration method was developed using a 100-mm pencil ion chamber and a CTDI phantom, accompanied by an absorbed dose error analysis reflecting multiple sources of measurement error. When using a single calibration factor, per tube potential, for different MOSFETs, only a small error was introduced into absorbed dose determinations, thus supporting the use of a single calibration factor for experiments involving many MOSFETs, such as those required to accurately estimate radiation effective dose.


Subject(s)
Metals/chemistry , Oxides/chemistry , Radiometry/instrumentation , Tomography, X-Ray Computed/instrumentation , Transistors, Electronic , Calibration , Research Design
4.
Phys Med Biol ; 57(13): 4211-21, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22684053

ABSTRACT

The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.


Subject(s)
Organs at Risk/radiation effects , Radiation Dosage , Thyroid Gland/radiation effects , Tomography, X-Ray Computed/adverse effects , Child, Preschool , Humans , Infant , Infant, Newborn , Radiometry , Software , Wounds, Nonpenetrating/diagnostic imaging
5.
Med Phys ; 38(7): 4396-405, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21859040

ABSTRACT

PURPOSE: Optically stimulated luminescence (OSL) dosimetry has been recently introduced in radiation therapy as a potential alternative to the thermoluminescent dosimeter (TLD) system. The aim of this study was to investigate the feasibility of using OSL point dosimeters in the energy range used in diagnostic imaging. METHODS: NanoDot OSL dosimeters (OSLDs) were used in this study, which started with testing the homogeneity of a new packet of nanoDots. Reproducibility and the effect of optical treatment (bleaching) were then examined, followed by an investigation of the effect of accumulated dose on the OSLD indicated doses. OSLD linearity, angular dependence, and energy dependence were also studied. Furthermore, comparison with LiF:Mg,Ti TLD chips using standard CT dose phantoms at 80 and 120 kVp settings was performed. RESULTS: Batch homogeneity showed a coefficient of variation of <5%. Single-irradiation measurements with bleaching after each OSL readout was found to be associated with a 3.3% reproducibility (one standard deviation measured with a 8 mGy test dose), and no systematic change in OSLDs sensitivity could be noted from measurement to measurement. In contrast, the multiple-irradiation readout without bleaching in between measurements was found to be associated with an uncertainty (using a 6 mGy test dose) that systematically increased with accumulated dose, reaching 42% at 82 mGy. Good linearity was shown by nanoDots under general x-ray, CT, and mammography units with an R2 > 0.99. The angular dependence test showed a drop of approximately 70% in the OSLD response at 90 degrees in mammography (25 kVp). With the general radiography unit, the maximum drop was 40% at 80 kVp and 20% at 120 kVp, and it was only 10% with CT at both 80 and 120 kVp. The energy dependence study showed a range of ion chamber-to-OSLDs ratios between 0.81 and 1.56, at the energies investigated (29-62 keV). A paired t-test for comparing the OSLDs and TLDs showed no significant variation (p > 0.1). CONCLUSIONS: OSLDs exhibited good batch homogeneity (<5%) and reproducibility (3.3%), as well as a linear response. In addition, they showed no statistically significant difference with TLDs in CT measurements (p > 0.1). However, high uncertainty (42%) in the dose estimate was found as a result of relatively high accumulated dose. Furthermore, nanoDots showed high angular dependence (up to 70%) in low kVp techniques. Energy dependence of about 60% was found, and correction factors were suggested for the range of energies investigated. Therefore, if angular and energy dependences are taken into consideration and the uncertainty associated with accumulated dose is avoided, OSLDs (nanoDots) can be suitable for use as point dosimeters in diagnostic settings.


Subject(s)
Luminescent Measurements/instrumentation , Nanotechnology/instrumentation , Optical Devices , Radiometry/instrumentation , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
6.
J Trauma ; 70(3): 724-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21610365

ABSTRACT

BACKGROUND: Increased utilization of computed tomography (CT) scans for evaluation of blunt trauma patients has resulted in increased doses of radiation to patients. Radiation dose is relatively amplified in children secondary to body size, and children are more susceptible to long-term carcinogenic effects of radiation. Our aim was to measure radiation dose received in pediatric blunt trauma patients during initial CT evaluation and to determine whether doses exceed doses historically correlated with an increased risk of thyroid cancer. METHODS: A prospective cohort study of patients aged 0 years to 17 years was conducted over 6 months. Dosimeters were placed on the neck, chest, and groin before CT scanning to measure surface radiation. Patient measurements and scanning parameters were collected prospectively along with diagnostic findings on CT imaging. Cumulative effective whole body dose and organ doses were calculated. RESULTS: The mean number of scans per patient was 3.1 ± 1.3. Mean whole body effective dose was 17.43 mSv. Mean organ doses were thyroid 32.18 mGy, breast 10.89 mGy, and gonads 13.15 mGy. Patients with selective CT scanning defined as ≤2 scans had a statistically significant decrease in radiation dose compared with patients with >2 scans. CONCLUSIONS: Thyroid doses in 71% of study patients fell within the dose range historically correlated with an increased risk of thyroid cancer and whole body effective doses fell within the range of historical doses correlated with an increased risk of all solid cancers and leukemia. Selective scanning of body areas as compared with whole body scanning results in a statistically significant decrease in all doses.


Subject(s)
Neoplasms, Radiation-Induced/etiology , Radiation Dosage , Thyroid Neoplasms/etiology , Tomography, X-Ray Computed/adverse effects , Wounds, Nonpenetrating/diagnostic imaging , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...