Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(24): 10319-10329, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37282835

ABSTRACT

The ability to control the structural properties of molecular layers is a key for the design and preparation of organic electronic devices. While microscopic growth studies of planar, rigid and symmetric π-conjugated molecules have been performed to a larger extent, this is less the case for elongated donor-acceptor molecules with flexible functional groups, which are particularly interesting due to their high dipole moments. Prototypical molecules of this type are merocyanines (MCs), which have been widely studied for the use as efficient absorbers in organic photodetectors. For maximized light absorption and optimized electronic properties the molecular arrangement which is affected by the initial assembly of the films at the supporting substrate interface is decisive. The situation deserves special attention, when the surface nucleation leads to so far not known and bulk-unlike aggregates. Here, we report on the growth of a typical MC (HB238) on the Ag(100) surface, serving as the substrate. In the energetically preferred phase, the molecules adsorb in a face-on geometry and organize in tetramers with a circular dipole arrangement. The tetramers further self-order in large, enantiopure domains with a periodicity that is commensurate to the Ag(100) surface, likely due to a specific bonding of the thiophene and thiazol rings to the Ag surface. Using scanning tunneling microscopy (STM) in combination with low energy electron diffraction we derive the detailed structure of the tetramers. The center of the tetramer, which is most prominent in STM images, consists of four upward pointing tert-butyl groups from four molecules. It is encircled by a ring of four hydrogen bonds between terminal CN-groups and thiophene rings on neighboring molecules. In parallel, the surface interaction modifies the intramolecular dipole, which is revealed from photoemission spectroscopy. Hence, this example shows how the surface template effect leads to an unforeseen molecular organization which is considerably more complex compared to that in the bulk phases of HB238, which feature paired dipoles.


Subject(s)
Microscopy, Scanning Tunneling , Surface Properties , Molecular Conformation , Microscopy, Scanning Tunneling/methods , Photoelectron Spectroscopy
2.
ACS Appl Mater Interfaces ; 15(21): 25966-25979, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37205839

ABSTRACT

Melanins are black-brown pigments of a specific class of poly indolequinones found in nature and in the human body. They are responsible for photoprotection, radical scavenging, and metal ion chelation. Recently, there has been significant interest in eumelanin as a functional material due to its macromolecular structure and the exploitation of the quinone-hydroquinone redox equilibrium. While eumelanin can be used in many promising applications, it is insoluble in most solvents, limiting its processing into homogeneous materials and coatings. A promising approach is to use a carrier system to stabilize eumelanin by incorporating cellulose nanofibrils (CNFs), a nanoscopic material that originates from plant biomass. In this work, a flexible network consisting of CNFs coupled with vapor-phase polymerized conductive polypyrrole (PPy) is utilized to form a functional eumelanin hydrogel composite (MelaGel) for environmental sensing and battery applications. Flexible sensors for detecting pH or metal ions made from MelaGel can detect both pH values in a range from 4 to 10 and metal ions like zinc(II), copper(II), and iron(III), paving the way for environmental and biomedical sensor applications. The reduced internal resistance in the MelaGel leads to improved charge storage ability compared to synthetic eumelanin composite electrodes. Other noteworthy advantages of the MelaGel are the amphiphilic nature of PPy and the additionally offered redox centers. Lastly, this material was tested in aqueous electrolyte zinc coin cells, where it was shown to have charge/discharge stability for over 1200 cycles, showcasing this MelaGel composite as a promising eumelanin-based composite hybrid sensor/energy storage material.

SELECTION OF CITATIONS
SEARCH DETAIL
...