Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455650

ABSTRACT

Cultural heritage objects are affected by a wide range of factors causing their deterioration and decay over time such as ground deformations, changes in hydrographic conditions, vibrations or excess of moisture, which can cause scratches and cracks formation in the case of historic buildings. The electromagnetic spectroscopy has been widely used for non-destructive structural health monitoring of concrete structures. However, the limitation of this technology is a lack of geolocalisation in the space for multispectral architectural documentation. The aim of this study is to examine different geolocalisation methods in order to determine the position of the sensor system, which will then allow to georeference the results of measurements performed by this device and apply corrections to the sensor response, which is a crucial element required for further data processing related to the object structure and its features. The classical surveying, terrestrial laser scanning (TLS), and Structure-from-Motion (SfM) photogrammetry methods were used in this investigation at three test sites. The methods were reviewed and investigated. The results indicated that TLS technique should be applied for simple structures and plain textures, while the SfM technique should be used for marble-based and other translucent or semi-translucent structures in order to achieve the highest accuracy for geolocalisation of the proposed sensor system.

2.
Sensors (Basel) ; 19(3)2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30696110

ABSTRACT

: Concrete failure will lead to serious safety concerns in the performance of a building structure. It is one of the biggest challenges for engineers to inspect and maintain the quality of concrete throughout the service years in order to prevent structural deterioration. To date, a lot of research is ongoing to develop different instruments to inspect concrete quality. Detection of moisture ingress is important in the structural monitoring of concrete. This paper presents a novel sensing technique using a smart antenna for the non-destructive evaluation of moisture content and deterioration inspection in concrete blocks. Two different standard concrete samples (United Kingdom and Malaysia) were investigated in this research. An electromagnetic (EM) sensor was designed and embedded inside the concrete to detect the moisture content within the structure. In addition, CST microwave studio was used to validate the theoretical model of the EM sensor against the test data. The results demonstrated that the EM sensor at 2.45 GHz is capable of detecting the moisture content in the concrete with linear regression of R² = 0.9752. Furthermore, identification of different mix ratios of concrete were successfully demonstrated in this paper. In conclusion, the EM sensor is capable of detecting moisture content non-destructively and could be a potential technique for maintenance and quality control of the building performance.

3.
Sensors (Basel) ; 16(2): 182, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26848661

ABSTRACT

During cutting and processing of meat, the loss of water is critical in determining both product quality and value. From the point of slaughter until packaging, water is lost due to the hanging, movement, handling, and cutting of the carcass, with every 1% of lost water having the potential to cost a large meat processing plant somewhere in the region of €50,000 per day. Currently the options for monitoring the loss of water from meat, or determining its drip loss, are limited to destructive tests which take 24-72 h to complete. This paper presents results from work which has led to the development of a novel microwave cavity sensor capable of providing an indication of drip loss within 6 min, while demonstrating good correlation with the well-known EZ-Driploss method (R² = 0.896).


Subject(s)
Biosensing Techniques/instrumentation , Food Analysis , Food Quality , Meat , Animals , Swine , Water/analysis
4.
Analyst ; 139(21): 5335-8, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25137405

ABSTRACT

The specific binding of streptavidin to biotinylated protein A was demonstrated using a microwave detection system. In control experiments, the degree of non-specific binding was negligible. The method of detection was used to monitor the adsorption of two other proteins, cytochrome c and glucose oxidase, on to the IDE microwave sensor surface. The response of the sensor was also examined on different substrate materials, with detection of protein binding observed obtained on both smooth, conductive (gold) and on rough, insulating (hydroxyapatite) surfaces.


Subject(s)
Microwaves , Staphylococcal Protein A/chemistry , Streptavidin/chemistry , Microscopy, Electron, Scanning , Protein Binding
5.
IEEE Trans Biomed Eng ; 60(12): 3291-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23771308

ABSTRACT

This study demonstrates an electromagnetic wave-based sensor embedded within a fluidic cell for the purposes of quantifying Pseudomonas aeruginosa in real time, which implies it could be applied for provision of point-of-care diagnostics. The sensors operates through the interaction of the electromagnetic field with the analyte flowing through the fluidic system, and via the sensor head which has a specifically designed planar pattern to maximize the sensor sensitivity for the given bacteria type. The sensor is demonstrated to respond linearly (R(2) = 0.9942) to OD(550) 25 × 10(-3) - 1.0 bacteria concentration through changing resonant frequency and peak quality factor. This innovative approach is expected to contribute to better provision of healthcare services, minimizing the need for hospital visits through real-time point-of-care diagnostics as opposed to lengthy laboratory assays.


Subject(s)
Bacteriological Techniques/instrumentation , Bacteriological Techniques/methods , Biosensing Techniques/instrumentation , Electromagnetic Fields , Microfluidic Analytical Techniques/instrumentation , Pseudomonas aeruginosa/isolation & purification , Equipment Design , Point-of-Care Systems , Pseudomonas aeruginosa/physiology
6.
Article in English | MEDLINE | ID: mdl-19227060

ABSTRACT

The food industry is keen to have new techniques that improve the safety and/or shelf life of food products without the use of preservatives. There is considerable interest in developing UV light and ozone (O3) treatments to enhance shelf life. A microwave radiation device that is a novel source of germicidal UV and O3 suitable for the food industry has been developed, which offers speed, cost and energy benefits over existing sources. With this system comes the need to monitor a number of conditions, primarily UV intensity and ozone gas concentrations. The effectiveness of intense UV exposure for short periods of time was assessed on different microorganisms. Culture plates were exposed to a range of doses of UV-C light, and the reduction in numbers of surviving microorganisms was recorded The results on the biocidal capacity of the microwave generated UV light are presented.


Subject(s)
Food Preservation , Microwaves , Ultraviolet Rays , Escherichia coli/growth & development , Escherichia coli/radiation effects , Food Irradiation , Food Microbiology , Ozone
SELECTION OF CITATIONS
SEARCH DETAIL
...