Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838692

ABSTRACT

With the increasing demand for wastewater treatment and multidrug resistance among pathogens, it was necessary to develop an efficient catalyst with enhanced photocatalytic and antibacterial applications. The present study proposes a facile and green strategy for synthesizing zinc oxide (ZnO) decorated nickel (Ni) nanomaterials. The synthesized Ni/ZnO nanocomposite displays a high crystallinity and spherical morphology, which was systematically characterized by XRD, SEM, FT-IR, UV-visible spectroscopy, EDX, HRTEM, and XPS techniques. In addition, the bacteriological tests indicated that Ni/ZnO nanocomposite exhibits potent antibacterial activity against human pathogens, i.e., Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). The inhibition zone observed in light and dark conditions for E. coli was 16 (±0.3) mm and 8 (±0.4) mm, respectively, which confirms the high efficacy of the nanocomposite in the presence of light compared to dark conditions. The detailed inhibition mechanism of said bacterium and damage were also studied through fluorescence spectroscopy and SEM analysis, respectively. Evaluation of antioxidant activity based on free radical scavenging activity revealed that the Ni/ZnO nanocomposite effectively scavenges DPPH. In the photocatalytic performance, the Ni/ZnO nanocomposite exhibited a remarkable degradation ability under the optimized condition, which was attributed to their controllable size, high surface area, and exceptional morphology. Good selectivity, high photodegradation, and antibacterial activities and satisfactory hemolytic behavior of the as-prepared nanocomposite make them able to become a potential candidate for superior biological performance and environmental remediation.


Subject(s)
Nanocomposites , Zinc Oxide , Humans , Antioxidants/pharmacology , Zinc Oxide/chemistry , Spectroscopy, Fourier Transform Infrared , Nickel/pharmacology , Escherichia coli , Staphylococcus aureus , Biomimetics , Anti-Bacterial Agents/pharmacology , Nanocomposites/chemistry , Catalysis
2.
Materials (Basel) ; 15(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35407807

ABSTRACT

Tin oxide (SnO2) and tin-based composites along with carbon have attracted significant interest as negative electrodes for lithium-ion batteries (LIBs). However, tin-based composite electrodes have some critical drawbacks, such as high volume expansion, low capacity at high current density due to low ionic conductivity, and poor cycle stability. Moreover, complex preparation methods and high-cost carbon coating procedures are considered main challenges in the commercialization of tin-based electrodes for LIBs. In this study, we prepared a Sn/SnO2/C nano-composite structure by employing a low-cost hydrothermal method, where Sn nanoparticles were oxidized in glucose and carboxymethyl cellulose CMC was introduced into the solution. Scanning electron microscope (SEM) and transmission electron microscope revealed the irregular structure of Sn nanoparticles and SnO2 phases in the conductive carbon matrix. The as-prepared Sn/SnO2/C nano-composite showed high first-cycle reversible discharge capacity (2248 mAhg-1) at 100 mAg-1 with a first coulombic efficiency of 70%, and also displayed 474.64 mAhg-1 at the relatively high current density of about 500 mAg-1 after 100 cycles. A low-cost Sn/SnO2/C nano-composite with significant electrochemical performance could be the next generation of high-performance negative electrodes for LIBs.

3.
Photodiagnosis Photodyn Ther ; 38: 102853, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35398263

ABSTRACT

Environmental pollution and various bacterial strains cause severe health problems. Thus a need exists to synthesize new materials and develop new techniques which can be used against these hazardous pathogens and components. In this research work, sustainable and effective Co/ZnO nanocomposites were prepared via a new hydrothermal technique and ammonia evaporation method. The synthesized nanomaterial was analytically characterized through various techniques such as X-ray diffraction (XRD), UV-vis spectroscopy, Scanning electron microscope (SEM), High transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The as prepared nanocomposite was tested for photodegradation of methylene blue (MB). This test was performed both in visible light and in dark condition. The results demonstrate that the said material is more efficient in light compared to dark conditions and decomposed more than 80% MB dye only in 60 min. The synthesized nanomaterial Co/ZnO was also tested against highly drug resistant bacteria Escherichia coli and Staphylococcus aureus both in light and dark. Hence, the antibacterial assessment indicates the zone of inhibition in visible light of Co/ZnO counter with Escherichia coli is 15 (±0.2) and for Staphylococcus aureus is 18 (±0.4) mm and in dark for Escherichia coli is 11 (±0.6) and for Staphylococcus aureus is 14 (±0.1) mm. Moreover, the detail mechanism, reactive oxygen species production and bacterial surface damage were also observed. We demonstrate that Co/ZnO nanomaterial is stable, eco-friendly photocatalyst shows high strength against MB degradation and also shows strong inhibition effect against pathogens in visible light.


Subject(s)
Nanocomposites , Photochemotherapy , Staphylococcal Infections , Zinc Oxide , Ammonia/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Methylene Blue/chemistry , Methylene Blue/pharmacology , Nanocomposites/chemistry , Photochemotherapy/methods , Staphylococcus aureus , Zinc Oxide/pharmacology
4.
Luminescence ; 37(4): 633-641, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35102681

ABSTRACT

In the present work, an improved class of protein functionalized fluorescent 2D Ti3 C2 MXene quantum dots (MXene QDs) was prepared using a hydrothermal method. Exfoliated 2D Ti3 C2 sheets were used as the starting precursor and transport protein bovine serum albumin (BSA) was used to functionalize the MXene QDs. BSA-functionalized MXene QDs exhibited excellent photophysical property and stability at various physiological parameters. High-resolution transmission electron microscopy analysis showed that the BSA@MXene QDs were quasispherical in shape with a size of ~2 nm. The fluorescence intensity of BSA@MXene QDs was selectively quenched in the presence of Fe3+ ions. The mechanism of fluorescence quenching was further substantiated using time-resolved fluorescence and Stern-Volmer analysis. The sensing assay showed a linear response within the concentration range 0-150 µM of Fe3+ ions with excellent limit of detection. BSA@MXene QDs probe showed good selectivity toward ferric ions even in the presence of other potential interferences. The practical applicability of BSA@MXene QDs was further tested in real samples for Fe3+ ion quantification and the sensor had good recovery rates. The cytotoxicity studies of the BSA@MXene QDs toward the human glioblastoma cells revealed that BSA@MXene QDs are biocompatible at lower doses and showed significant cytotoxicity at higher dosages.


Subject(s)
Quantum Dots , Fluorescent Dyes , Humans , Ions , Quantum Dots/toxicity , Serum Albumin, Bovine/metabolism , Titanium
5.
Photodiagnosis Photodyn Ther ; 37: 102681, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34915183

ABSTRACT

The increase of microbial resistance poses threats to human health. Therefore, efficient treatment of microbial resistance is a global challenge.. During this study, the Ag/NiO nanocomposite was fabricated via simple and ecofriendly method, using Uncaria rhynchophylla extract as a reducing and capping agent to avoid the aggregation of as synthesized nanomaterials. Here, a range of characterization techniques were employed to characterize the sample which includes UV-vis spectroscopy, X-ray diffraction, FTIR spectroscopy, electron diffraction spectroscopy (EDX), scanning electron microscopy (SEM). Furthermore, the resultant nanocomposite demonstrated an efficient ability for the inhibition of both gram-positive and gram negative pathogenic multidrug resistant bacteria. Additionally, the Ag/NiO nanocomposite showed a durable antioxidant effect against DPPH that could still reach 63% at very low concentration, i.e. 0.5 mg/mL. Interestingly, the synthesized nanocomposite is efficient for the production of reactive oxygen species (ROS) and shows no hemolytic activity. Likewise, the Ag/NiO nanocomposite displayed excellent photocatalytic activity to degrade 85% methylene blue (MB) by 4 mg/25 mL and could be used for waste water treatment. It is believed that synthesized nanostructure with desirable morphology and preparation simplicity can be promising material for antimicrobial, antioxidant and catalytic applications.


Subject(s)
Metal Nanoparticles , Nanocomposites , Photochemotherapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Humans , Nanocomposites/chemistry , Photochemotherapy/methods , Uncaria
6.
Photodiagnosis Photodyn Ther ; 36: 102619, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34748999

ABSTRACT

The present study reports the synthesis of silver (Ag) decorated zinc oxide (ZnO) nanocomposite via green synthesis method by using Acacia arabica plant leaves extract as both reducing and capping agent. The results clearly indicate a uniform distribution of Ag nanoparticles (NPs) over ZnO surface. Various analytical and spectroscopic techniques were used for investigating the formation and morphology of as-synthesized Ag/ZnO nanocomposites. Emergence of SPR at 424 and 378 nm confirmed the synthesis of AgNPs and ZnO respectively. The confirmation of elemental composition and crystal structure of prepared nanomaterials (NMs) was carried out via EDX and XRD analysis. Results obtained from HRTEM and SEM analysis indicated small sized spherically shaped NMs. The as-synthesized was checked for its photocatalytic activity towards degradation of MB in the presence as well as absence of light irradiation. Results of degradation study revealed that Ag/ZnO exhibits remarkable photocatalytic activity in the presence of light whereby removing 90% of MB within 80 min. Moreover, the antibacterial activity of synthesized nanocomposite was examined in both visible light and dark conditions. The experiment showed that nanomaterial depicts enhanced antibacterial activity in light in comparison to dark. The results showed that the inhibition diameter of Ag/ZnO nanocomposite in light was found to be 18 (±0.2), 22 (±0.3) against E. coli and S. aureus respectively. The inhibition zone of the said nanomaterial against E. coli and S. aureus in dark was 11 (±0.3), 14 (±0.5) respectively. These results conclude that activity is delivered both in the presence of visible light and dark but efficiency of antibacterial activity is found to be more in visible light in comparison.


Subject(s)
Metal Nanoparticles , Nanocomposites , Photochemotherapy , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Escherichia coli , Light , Photochemotherapy/methods , Photosensitizing Agents , Silver/pharmacology , Staphylococcus aureus , Zinc , Zinc Oxide/pharmacology
7.
Phys Chem Chem Phys ; 18(38): 26495-26508, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27711696

ABSTRACT

We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.

8.
Soft Matter ; 12(40): 8375-8387, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27714382

ABSTRACT

We prepared model porous composite supra-particles and investigated the effect of the initial infused fluid phase on their attachment at the liquid-fluid interface. We used a simple method for fabrication of millimetre-sized spherical porous supra-particles from much smaller monodisperse latex microparticles as building blocks by evaporation of a polystyrene sulphate latex suspension on a hot super-hydrophobic surface. We annealed the dried supra-particles at the polymer's glass transition temperature to fuse partially their latex particle building blocks. Spherical porous supra-particles were produced above 40 wt% initial concentration of the latex particles in the suspension, which had a rough surface, with a porous and amorphous structure. We controlled the supra-particle size by varying the initial volume of the latex suspension drop, the latex particle concentration and the drop evaporation temperature. This preparation technique allowed limited control over the porosity of the supra-particles by varying the initial concentration of the latex particle suspension, the rate of evaporation and the annealing temperature. We characterised the surface morphology and the inner structure of supra-particles by SEM imaging. We report for the first time results of an MRI study of supra-particles attached to an air-water or an oil-water interface, which indicated that only the surface layer of the building block particles attaches to the liquid interface while the pore fluid was not displaced by the outer fluid. We observed that supra-particles infused with water had different wettability and attachment positions at the oil-water interface compared with the same particles infused with oil. Similarly, the infusion of the porous supra-particles with water led to a different attachment at the air-water interface compared to the attachment of the same supra-particle when dry. The fundamental importance of this result is that the porous particles (or colloid particle agglomerates) may give an oil-in-water or water-in-oil Pickering emulsion depending on whether they are initially impregnated with oil or water. The results of this study are relevant for particle-stabilised emulsions and foams in a range of pharmaceutical, food and cosmetic formulations as well as ore flotation.

9.
Soft Matter ; 10(34): 6433-41, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25051271

ABSTRACT

We have studied how carboxylic modified latex (CML) microparticles adsorb at liquid surfaces and the preferred type of emulsion they can stabilise depending on the particle size and the surface density of carboxylic groups. We measured the particle contact angle by using the gel trapping technique (GTT) for CML particles adsorbed at air-water and oil-water interfaces. Using this method we obtained scanning electron microscopy (SEM) micrographs of polydimethylsiloxane (PDMS) replicas of the liquid interface with the particles, where the PDMS replicates the non-polar phase and measured the particle contact angle. We discovered that the particle wettability correlates well with the surface density of the carboxylic groups but is not very sensitive to the presence of electrolyte in the aqueous phase and the value of the particle zeta potential. We demonstrated that CML microparticles with a high surface density of COOH groups stabilise oil-in-water (O/W) emulsions while those with the lowest coverage of COOH groups favour the formation of water-in-oil (W/O) emulsions. We found that this corresponds to a change of the CML particle contact angle from lower than 90° to higher than 90° upon decrease of the surface density of COOH groups. The findings confirm that the surface density of polar groups has a much bigger effect on the particle wettability and the preferred emulsion than the particle surface charge and zeta potential. Our results on the type of stabilised Pickering emulsion agree with other experimental studies with different particle materials. We propose an alternative explanation for the link between the particle contact angle and the type of stabilised Pickering emulsion.

SELECTION OF CITATIONS
SEARCH DETAIL
...