Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 822: 153645, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35124039

ABSTRACT

The continuous growth in overall energy demand and the related environmental impacts play a significant role in the large sustainable and green global energy transition. Moreover, the electrical power sector is a major source of carbon dioxide emissions. Therefore, renewable energy (RE) integration into the power grid has attracted significant economic, environmental, and technical attention in recent years. However, RE can also harm the environment, even though it is deemed less harmful than fossil fuel-based power. It may also cause technical, operational, and social issues. This, in return, more consideration and appropriate precautions should be taken. Given the recent sharp increase in RE utilization and its progressing impact on the world energy sector, evaluating its effect on the environment and sustainable development is limitedly explored and must be investigated. This study aims to discuss the role of RE integration in sustainable development. It provides an up-to-date review of the most recent global trend of various RE integrations into the power sector. The role and impact of this high integration level on the environment and the adverse effects of each RE source are discussed in detail. The recent challenges, including technical and operational challenges (i.e., voltage stability, frequency stability, and power quality), integration policy and standards challenges, RE environmental concerns, resource selection and location, and social challenges towards a sustainable electricity future and grid decarbonization, are comprehensively reviewed, discussed, and analyzed. A review of the literature was conducted from 2010 to 2021. Around 712 articles were classified during this process, and 177 papers were filtered for critical review. The literature analysis showed that RE integration has increased dramatically and has many benefits; however, more attention should be paid to mitigate its harmful impacts and recent challenges appeared. The new challenges resulting from the increasing generation of RE and linking it to the electric grid were listed to allow for future studies to find the appropriate solutions towards green and sustainable energy. Finally, towards a sustainable power system, the paper concludes with recommendations for future research directions.


Subject(s)
Renewable Energy , Sustainable Development , Carbon Dioxide/analysis , Economic Development , Energy-Generating Resources , Environment , Fossil Fuels
2.
PLoS One ; 15(12): e0243581, 2020.
Article in English | MEDLINE | ID: mdl-33362200

ABSTRACT

The lack of control in voltage overshoot, transient response, and steady state error are major issues that are frequently encountered in a grid-connected photovoltaic (PV) system, resulting in poor power quality performance and damages to the overall power system. This paper presents the performance of a control strategy for an inverter in a three-phase grid-connected PV system. The system consists of a PV panel, a boost converter, a DC link, an inverter, and a resistor-inductor (RL) filter and is connected to the utility grid through a voltage source inverter. The main objective of the proposed strategy is to improve the power quality performance of the three-phase grid-connected inverter system by optimising the proportional-integral (PI) controller. Such a strategy aims to reduce the DC link input voltage fluctuation, decrease the harmonics, and stabilise the output current, voltage, frequency, and power flow. The particle swarm optimisation (PSO) technique was implemented to tune the PI controller parameters by minimising the error of the voltage regulator and current controller schemes in the inverter system. The system model and control strategies were implemented using MATLAB/Simulink environment (Version 2020A) Simscape-Power system toolbox. Results show that the proposed strategy outperformed other reported research works with total harmonic distortion (THD) at a grid voltage and current of 0.29% and 2.72%, respectively, and a transient response time of 0.1853s. Compared to conventional systems, the PI controller with PSO-based optimization provides less voltage overshoot by 11.1% while reducing the time to reach equilibrium state by 32.6%. The consideration of additional input parameters and the optimization of input parameters were identified to be the two main factors that contribute to the significant improvements in power quality control. Therefore, the proposed strategy effectively enhances the power quality of the utility grid, and such an enhancement contributes to the efficient and smooth integration of the PV system.


Subject(s)
Algorithms , Electric Power Supplies , Electricity , Equipment Design , Renewable Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...