Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmazie ; 72(2): 81-86, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-29441857

ABSTRACT

This work was aimed to explore the potential effect of hyaluronic acid (HA) initial concentration (7.0 - 14.0 % w/v) on cross-linking efficiency of HA hydrogels cross-linked with 1,4-butanediol diglycidyl ether (BDDE). The results revealed that the hydrogel prepared at 10.0 % HA concentration exhibited a slower degradation rate, a lower swelling ability and more regular porosity than those prepared at either lower or higher HA concentration. After four days incubating with hyaluronidase, the content of NAG (N-acetyl glucosamine) remaining in the 10.0 HA hydrogel was 25.1±1.9 % with respect to the total NAG content found in the original mass. In contrast, the hydrogels prepared at 7.0 % and 14.0 % HA concentration showed a less remaining content of NAG equaled to approximately 15.9±5.4 % and 19.5±2.6 % respectively. On the other hand, the swelling ability of tested hydrogels was steadily decreased with the increase of HA initial concentration until the 10.0 % HA hydrogel and then showed an opposite trend. Based on this finding, the 10.0 % HA hydrogel exhibited the lowest swelling ratio which was observed at 129±3.2 g/g in distilled water and at 116±2.4 g/g in phosphate buffer saline (PBS). The SEM images showed various morphologies within the entire range of tested hydrogels. However, the hydrogel prepared at 10.0 % HA concentration was more homogenous and appeared with narrower pore-size distribution ranged in diameter from less than 50 µm to approximately 300 µm. Finally, the effect of HA initial concentration was investigated by FTIR which confirmed that the 10.0 % HA hydrogel was subject to a greater loss of (- OH) at 3343 cm-1 than other hydrogels except the 11.0 % HA hydrogel. This phenomenon was probably attributed to the formation of pendants that allowed the 11.0 % HA hydrogel to appear with a lower peak intensity than the 10.0 % HA hydrogel in the FTIR spectra. In conclusion, the HA initial concentration plays a crucial role in determining the cross-linking efficiency of HA hydrogels cross-linked with BDDE.


Subject(s)
Butylene Glycols/chemistry , Chemistry, Pharmaceutical/methods , Cross-Linking Reagents/chemistry , Hyaluronic Acid/chemistry , Drug Compounding/methods , Hydrogels , Microscopy, Electron, Scanning , Porosity , Spectroscopy, Fourier Transform Infrared , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...