Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Drug Deliv ; 21(3): 399-422, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38623735

ABSTRACT

INTRODUCTION: Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED: Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION: The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.


Subject(s)
Antibiotics, Antineoplastic , Cardiotoxicity , Doxorubicin , Drug Carriers , Nanoparticles , Doxorubicin/adverse effects , Doxorubicin/administration & dosage , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Humans , Animals , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Polymers/chemistry , Heart Failure/drug therapy , Heart Failure/chemically induced , Lipids/chemistry
2.
Polymers (Basel) ; 15(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37688223

ABSTRACT

The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.

3.
Food Chem ; 424: 136438, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37244187

ABSTRACT

Nanotechnology is an advanced field that has remarkable nutraceutical and food applications. Phyto-bioactive compounds (PBCs) play critical roles in promoting health and disease treatment. However, PBCs generally encounter several limitations that delay their widespread application. For example, most PBCs have low aqueous solubility, poor biostability, poor bioavailability, and a lack of target specificity. Moreover, the high concentrations of effective PBC doses also limit their application. As a result, encapsulating PBCs into an appropriate nanocarrier may increase their solubility and biostability and protect them from premature degradation. Moreover, nanoencapsulation could improve absorption and prolong circulation with a high opportunity for targeted delivery that may decrease unwanted toxicity. This review addresses the main parameters, variables, and barriers that control and affect oral PBC delivery. Moreover, this review discusses the potential role of biocompatible and biodegradable nanocarriers in improving the water solubility, chemical stability, bioavailability, and specificity/selectivity of PBCs.


Subject(s)
Nanoparticles , Nanotechnology , Dietary Supplements , Solubility , Biological Availability , Nanoparticles/chemistry , Drug Delivery Systems
4.
ACS Omega ; 4(2): 3306-3313, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459545

ABSTRACT

A detailed computational study of the decomposition reaction mechanisms of cis-propylamine (cis-PA), trans-propylamine (trans-PA), and the cis-isomer of its protonated form (cis-HPA) has been carried out. Fourteen major pathways with their kinetic and thermodynamic parameters are reported. All reported reactions have been located with a concerted transition state, leading to significant products that agree with previous theoretical and experimental studies. Among six decomposition pathways of trans-PA, the formation of propene and NH3 is the significant one, kinetically and thermodynamically, with an activation energy barrier of 281 kJ mol-1. The production of two carbenes is found via two different transition states, where the reactions are thermodynamically controlled and reversible. Furthermore, five decomposition pathways of cis-PA have been considered where the formation of ethene, methylimine, and H2 is the most plausible one with an activation energy barrier of 334 kJ mol-1. The results show that the formation of propene and NH4 + from the decomposition of cis-HPA is the most favorable reaction with an activation barrier of 184 kJ mol-1, that is, the lowest activation energy calculated for all decomposition pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...