Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; : 1-17, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644591

ABSTRACT

Drought is a threat to food security and agricultural sustainability in arid and semi-arid countries. Using wasted silica nanoparticles could minimize water scarcity. A controlled study investigated wheat plant physiological and morphological growth under tap-water irrigation (80-100, 60-80, and 40-60% field capacity). The benefits of S1: 0%, S2: 5%, and S3: 10% nanoparticle silica soil additions were studied. Our research reveals that water stress damages the physiological and functional growth of wheat plants. Plant height decreased by 8.9%, grain yield by 5.4%, and biological yield by 19.2%. These effects were observed when plants were irrigated to 40-60% field capacity vs. control. In plants under substantial water stress (40-60% of field capacity), chlorophyll a (8.04 mg g-1), b (1.5 mg g-1), total chlorophyll (9.55 mg g-1), carotenoids (2.44 mg g-1), and relative water content (54%), Electrolyte leakage (59%), total soluble sugar (1.79 mg g-1 fw), and proline (80.3 mol g-1) were highest. Plants cultivated with silica nanoparticles exhibit better morphological and physiological growth than controls. The largest effect came from maximum silica nanoparticle loading. Silica nanoparticles may increase drought-stressed plant growth and production.


This study investigates the impact of silica nanoparticles on the development of wheat plants experiencing water stress. Silica nanoparticles are essential for stimulating biochemical defenses against water stress, although research is limited. In stressed wheat plants, silica nanoparticles as a soil supplement increased biological and grain yield. Wheat grown under drought conditions will benefit from this study.

2.
Int J Phytoremediation ; 25(11): 1463-1473, 2023.
Article in English | MEDLINE | ID: mdl-36600578

ABSTRACT

Salinity continues to be a key factor limiting food security and agricultural sustainability in arid and semi-arid countries. Biochar has been promoted to reduce the risk of saline irrigation. In a controlled study, physiological and morphological growth factors of kochia plants that were irrigated with tap water (S1) and saline water (S2) were assessed to identify the ameliorative effects of biochar amendment to the soil at different levels (B1: 0%, B2: 2%, B3: 5%, and B4: 10%. According to our findings, salinity stress negatively affected morphological and physiological growth parameters of kochia plants by decreasing the fresh and dry weight (25% and 28%, respectively), plant height (30%), circumference (46%), total chlorophyll (51%), and relative water content (29%) when compared to the controls. Furthermore, electrolyte leakage increased considerably (19%) due to salt stress. Significant morphological and physiological growth enhancements were seen at all biochar levels in comparison to the control treatment, with the highest level increasing plant height by 55%, circumference by 76%, total chlorophyll concentrations by 121%, and relative water content by 28%. Furthermore, it resulted in a 36% reduction in the stressed plants' electrolyte leakage. The findings demonstrated biochar's benefits in reducing salinity's negative effects on kochia plants.


• This study provides new data about the specifying the impact of using biochar on salinity concentration and the growth parameters of kochia plants. This investigation demonstrated a significant results in terms of that the salinity stress relative to using biochar.• Biochar is crucial for stimulating and activating biochemical defensive mechanisms against salt stress; yet, research in this area is lacking.• Biochar has shown that it is crucial to stimulate biochemical defense mechanisms against salinity stress• It was found that using biochar as a soil supplement improved morphological, physiological, and biochemical characteristics of the kochia plant by increasing fresh and dried weight per plant, plant height, plant circumference, chlorophyll concentrations, and relative water content while lowering electrolyte leakage in stressed kochia plants. This research will aid in increasing kochia's early development and stand establishment in saline circumstances.


Subject(s)
Bassia scoparia , Chenopodiaceae , Bassia scoparia/metabolism , Chenopodiaceae/metabolism , Biomass , Biodegradation, Environmental , Salt Stress , Electrolytes , Chlorophyll/metabolism , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...