Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomech Model Mechanobiol ; 23(2): 373-396, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072897

ABSTRACT

Using liver phantoms for mimicking human tissue in clinical training, disease diagnosis, and treatment planning is a common practice. The fabrication material of the liver phantom should exhibit mechanical properties similar to those of the real liver organ in the human body. This tissue-equivalent material is essential for qualitative and quantitative investigation of the liver mechanisms in producing nutrients, excretion of waste metabolites, and tissue deformity at mechanical stimulus. This paper reviews the mechanical properties of human hepatic tissues to develop liver-mimicking phantoms. These properties include viscosity, elasticity, acoustic impedance, sound speed, and attenuation. The advantages and disadvantages of the most common fabrication materials for developing liver tissue-mimicking phantoms are also highlighted. Such phantoms will give a better insight into the real tissue damage during the disease progression and preservation for transplantation. The liver tissue-mimicking phantom will raise the quality assurance of patient diagnostic and treatment precision and offer a definitive clinical trial data collection.


Subject(s)
Elasticity Imaging Techniques , Humans , Elasticity , Liver , Phantoms, Imaging , Acoustics
2.
Heliyon ; 9(11): e22071, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027785

ABSTRACT

Research Experience programs (REPs) inspire students to pursue advanced degrees and shape their research career paths. Government and commercial organizations sponsor REPs to promote the capacity building of the country. In Qatar, the national youth is reported to show concerning participation in Science, Technology, Engineering, and Mathematics (STEM) disciplines at the K-12 level. However, none of the studies investigate these participation trends at the undergraduate level, especially in scientific research, which is deemed necessary for building a knowledge-based economy in Qatar. Therefore, to bridge this gap, the current study uses a quantitative approach to analyze the REP in Qatar through the participation data of 2455 undergraduate students. For this, statistical measures, including descriptive analysis, independent samples t-test, and Pearson's correlation analysis were used. Results indicated concerning trends in national student participation rate, implying underlying issues restricting their representation in undergraduate research activities. Also, statistically significant differences were found in student participation rates among students' gender and ethnic distributions. While female students demonstrated higher participation rates than males, national students showed lower participation than the non-nationals. Moreover, this low participation of national students suffered more drastically in STEM disciplines. Therefore, these findings determine the outlook for stakeholders and academic institutions in making meaningful educational decisions and envision synchronizing REPs at the university level, gauging measures to bolster the adjacent funding agencies and government organizations. Furthermore, being the first research addressing REPs in the Middle East region, this study has the potential to support educators in neighboring and other developing nations where STEM education is especially significant for human capacity building.

3.
Heliyon ; 9(2): e13477, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36814632

ABSTRACT

Silicon/perovskite tandem devices are believed to be a favorite contender for improving cell performance over the theoretical maximum value of single-junction photovoltaic (PV) cells. The present study evaluates the design and optimization of four-terminal (4-T) mechanically stacked and optically coupled configurations using SCAPS (solar cell capacitance simulator). Low-cost, stable, and easily processed semitransparent carbon electrode-based perovskite solar cells (c-PSCs) without hole transport material (HTM) and highly efficient crystalline silicon (c-Si) PV cells were utilized as top and bottom cells, respectively. The wide bandgap multi-cation perovskite C s x ( F A 0.4 M A 0.6 ) 1 - x P b I 2.8 B r 0.2 and a low bandgap c-Si were employed as light-harvesting layers in the top and bottom cells, respectively. The impact of perovskite thickness and doping concentrations were examined and optimized for both tandem configurations. Under optimized conditions, thicknesses of 1000 nm and 1100 nm are the best values of the perovskite absorber layer for 4-T mechanically stacked and optically coupled arrangements, respectively. Likewise, 1 × 1017 cm-3 doping concentration of top cells revealed the highest performance in both structures. With these optimized parameters under tandem configurations, efficiency values of 28.38% and 29.34% were obtained in 4-T mechanically and optically coupled tandems, respectively. Results suggest that by optimizing perovskite thickness and doping concentration, the proposed designs using HTM-free c-PSCs could enhance device performance.

4.
Sci Rep ; 11(1): 33, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33420108

ABSTRACT

Perovskite solar cells (PSCs) expressed great potentials for offering a feasible alternative to conventional photovoltaic technologies. 2D/3D hybrid PSCs, where a 2D capping layer is used over the 3D film to avoid the instability issues associated with perovskite film, have been reported with improved stabilities and high power conversion efficiencies (PCE). However, the profound analysis of the PSCs with prolonged operational lifetime still needs to be described further. Heading towards efficient and long-life PSCs, in-depth insight into the complicated degradation processes and charge dynamics occurring at PSCs' interfaces is vital. In particular, the Au/HTM/perovskite interface got a substantial consideration due to the quest for better charge transfer; and this interface is debatably the trickiest to explain and analyze. In this study, multiple characterization techniques were put together to understand thoroughly the processes that occur at the Au/HTM/perovskite interface. Inquest analysis using current-voltage (I-V), electric field induced second harmonic generation (EFISHG), and impedance spectroscopy (IS) was performed. These techniques showed that the degradation at the Au/HTM/perovskite interface significantly contribute to the increase of charge accumulation and change in impedance value of the PSCs, hence resulting in efficiency fading. The 3D and 2D/3D hybrid cells, with PCEs of 18.87% and 20.21%, respectively, were used in this study, and the analysis was performed over the aging time of 5000 h. Our findings propose that the Au/HTM/perovskite interface engineering is exclusively essential for attaining a reliable performance of the PSCs and provides a new perspective towards the stability enhancement for the perovskite-based future emerging photovoltaic technology.

5.
Nanomaterials (Basel) ; 10(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825347

ABSTRACT

The future photovoltaic technologies based on perovskite materials are aimed to build low tech, truly economical, easily fabricated, broadly deployable, and trustworthy solar cells. Hole transport material (HTM) free perovskite solar cells (PSCs) are among the most likely architectures which hold a distinctive design and provide a simple way to produce large-area and cost-effective manufacture of PSCs. Notably, in the monolithic scheme of the HTM-free PSCs, all layers can be printed using highly reproducible and morphology-controlled methods, and this design has successfully been demonstrated for industrial-scale fabrication. In this review article, we comprehensively describe the recent advancements in the different types of mesoporous (nanostructured) and planar HTM-free PSCs. In addition, the effect of various nanostructures and mesoporous layers on their performance is discussed using the electrochemical impedance spectroscopy (EIS) technique. We bring together the different perspectives that researchers have developed to interpret and analyze the EIS data of the HTM-free PSCs. Their analysis using the EIS tool, the limitations of these studies, and the future work directions to overcome these limitations to enhance the performance of HTM-free PSCs are comprehensively considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...