Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 14(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893899

ABSTRACT

Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases. Docking studies revealed that bromelain strongly bound to food-borne bacterial pathogens and SARS-CoV-2 virus targets, with a high binding energy of -9.37 kcal/mol. The binding interaction was mediated by the involvement of hydrogen bonds, and some hydrophobic interactions stabilized the complex and molecular dynamics. Simulation studies also indicated the stable binding between bromelain and SARS-CoV-2 protease as well as with bacterial targets which are essential for DNA and protein synthesis and are required to maintain the integrity of membranous proteins. From this in silico study, it is also concluded that bromelain could be an effective molecule to control foodborne pathogen toxicity and COVID-19. So, eating pineapple during an infection could help to interfere with the pathogen attaching and help prevent the virus from getting into the host cell. Further, research on the bromelain molecule could be helpful for the management of COVID-19 disease as well as other bacterial-mediated diseases. Thus, the antibacterial and anti-SARS-CoV-2 virus inhibitory potentials of bromelain could be helpful in the management of viral infections and subsequent bacterial infections in COVID-19 patients.


Subject(s)
Ananas , Bacteria , Bromelains , SARS-CoV-2 , Ananas/chemistry , Antiviral Agents/pharmacology , Bacteria/drug effects , Bromelains/pharmacology , COVID-19 , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects
2.
Front Genet ; 12: 800587, 2021.
Article in English | MEDLINE | ID: mdl-35069699

ABSTRACT

The development of resistance in microbes against antibiotics and limited choice for the use of chemical preservatives in food lead the urgent need to search for an alternative to antibiotics. The enzymes are catalytic proteins that catalyze digestion of bacterial cell walls and protein requirements for the survival of the cell. To study methyltransferase as antibiotics against foodborne pathogen, the methyltransferase enzyme sequence was modeled and its interactions were analyzed against a membrane protein of the gram-positive and gram-negative bacteria through in silico protein-protein interactions. The methyltransferase interaction with cellular protein was found to be maximum, due to the maximum PatchDock Score (15808), which was followed by colicin (12864) and amoxicillin (4122). The modeled protein has found to be interact more significantly to inhibit the indicator bacteria than the tested antibiotics and antimicrobial colicin protein. Thus, model enzyme methyltransferase could be used as enzymobiotics. Moreover, peptide sequences similar to this enzyme sequence need to be designed and evaluated against the microbial pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...