Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Transcription ; : 1-28, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126125

ABSTRACT

The rising threat of antibiotic resistance in pathogenic bacteria emphasizes the need for new therapeutic strategies. This review focuses on bacterial transcription factors (TFs), which play crucial roles in bacterial pathogenesis. We discuss the regulatory roles of these factors through examples, and we outline potential therapeutic strategies targeting bacterial TFs. Specifically, we discuss the use of small molecules to interfere with TF function and the development of transcription factor decoys, oligonucleotides that compete with promoters for TF binding. We also cover peptides that target the interaction between the bacterial TF and other factors, such as RNA polymerase, and the targeting of sigma factors. These strategies, while promising, come with challenges, from identifying targets to designing interventions, managing side effects, and accounting for changing bacterial resistance patterns. We also delve into how Artificial Intelligence contributes to these efforts and how it may be exploited in the future, and we touch on the roles of multidisciplinary collaboration and policy to advance this research domain.Abbreviations: AI, artificial intelligence; CNN, convolutional neural networks; DTI: drug-target interaction; HTH, helix-turn-helix; IHF, integration host factor; LTTRs, LysR-type transcriptional regulators; MarR, multiple antibiotic resistance regulator; MRSA, methicillin resistant Staphylococcus aureus; MSA: multiple sequence alignment; NAP, nucleoid-associated protein; PROTACs, proteolysis targeting chimeras; RNAP, RNA polymerase; TF, transcription factor; TFD, transcription factor decoying; TFTRs, TetR-family transcriptional regulators; wHTH, winged helix-turn-helix.

2.
J Bacteriol ; 204(11): e0023722, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36286517

ABSTRACT

Burkholderia thailandensis is a member of the Burkholderia pseudomallei complex. It encodes the transcription factor MftR, which is conserved among the more pathogenic Burkholderia spp. and previously shown to be a global regulator of gene expression. We report here that a B. thailandensis strain in which the mftR gene is disrupted is more virulent in both Caenorhabditis elegans and onion. The ΔmftR strain exhibits a number of phenotypes associated with virulence. It is more proficient at forming biofilm, and the arcDABC gene cluster, which has been linked to anaerobic survival and fitness within a biofilm, is upregulated. Swimming and swarming motility are also elevated in ΔmftR cells. We further show that MftR is one of several transcription factors which control production of the siderophore malleobactin. MftR binds directly to the promoter driving expression of mbaS, which encodes the extracytoplasmic function sigma factor MbaS that is required for malleobactin production. Malleobactin is a primary siderophore in B. thailandensis as evidenced by reduced siderophore production in mbaS::Tc cells, in which mbaS is disrupted. Expression of mbaS is increased ~5-fold in ΔmftR cells, and siderophore production is elevated. Under iron-limiting conditions, mbaS expression is increased ~150-fold in both wild-type and ΔmftR cells, respectively, reflecting regulation by the ferric uptake regulator (Fur). The mbaS expression profiles also point to repression by a separate, ligand-responsive transcription factor, possibly ScmR. Taken together, these data indicate that MftR controls a number of phenotypes, all of which promote bacterial survival in a host environment. IMPORTANCE Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules. Uptake of iron-siderophore complexes averts bacterial iron limitation. In Burkholderia spp., malleobactin or related compounds are the primary siderophores. We show here that genes encoding proteins required for malleobactin production in B. thailandensis are under the direct control of the global transcription factor MftR. Repression of gene expression by MftR is relieved when MftR binds xanthine, a purine metabolite present in host cells. Our work therefore identifies a mechanism by which siderophore production may be optimized in a host environment, thus contributing to bacterial fitness.


Subject(s)
Burkholderia , Siderophores , Siderophores/metabolism , Virulence/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia/genetics , Burkholderia/metabolism , Iron/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Bacterial
3.
Res Vet Sci ; 119: 45-51, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29857245

ABSTRACT

Mastitis is one of the costliest diseases affecting the world's dairy industry. The important contribution of complement Component 5 (C5) to phagocytosis, which plays a major role in the defence of the bovine mammary gland against infection, makes this component of innate immunity a potential contributor in defending udder against mastitis. The objectives of this study were to sequence and analyse the whole coding region of the C5 gene in Egyptian buffalo and cattle, to detect any nucleotide variations (polymorphisms) and to investigate their associations with milk somatic cell score (SCS) as an indicator of mastitis in dairy animals. We sequenced a buffalo C5 cDNA fragment of 5336 bp (KP221293) and a cattle C5 cDNA fragment of 5303 bp (KP221294), which included the whole coding region and 3-UTR. Buffalo and cattle C5 cDNA shared sequence identity of 99%. The predicted complement C5 proteins consist of 1677 amino acid residues in both animals, one amino acid less than in humans and three amino acids more than in mouse C5 protein. Comparing cDNA sequences of different animals revealed nine novel SNPs in buffalo and seven SNPs in cattle, with two of them being novel. The association analysis revealed that five SNPs in buffalo are highly associated with SCS; indicating the contribution of complement C5 variants in buffalo mastitis resistance. No significant associations were detected between C5 variants and SCS in cattle. This is the first report about C5 variants in buffalo and its association with SCS.


Subject(s)
Buffaloes , Cattle , Complement C5/genetics , Mastitis, Bovine/genetics , Animals , Egypt , Female , Milk , Polymorphism, Single Nucleotide
4.
J Genet ; 96(1): 65-73, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28360391

ABSTRACT

Mastitis is an infectious disease of the mammary gland that leads to reduced milk production and change in milk composition. Complement component C3 plays a major role as a central molecule of the complement cascade involving in killing of microorganisms, either directly or in cooperation with phagocytic cells. C3 cDNA were isolated, from Egyptian buffalo and cattle, sequenced and characterized. The C3 cDNA sequences of buffalo and cattle consist of 5025 and 5019 bp, respectively. Buffalo and cattle C3 cDNAs share 99% of sequence identity with each other. The 4986 bp open reading frame in buffalo encodes a putative protein of 1661 amino acids-as in cattle-and includes all the functional domains. Further, analysis of the C3 cDNA sequences detected six novel single-nucleotide polymorphisms (SNPs) in buffalo and three novel SNPs in cattle. The association analysis of the detected SNPs with milk somatic cell score as an indicator of mastitis revealed that the most significant association in buffalo was found in the C>A substitution (ss: 1752816097) in exon 27, whereas in cattle it was in the C>T substitution (ss: 1752816085) in exon 12. Our findings provide preliminary information about the contribution of C3 polymorphisms to mastitis resistance in buffalo and cattle.


Subject(s)
Buffaloes/genetics , Complement C3/genetics , Disease Resistance/genetics , Mastitis, Bovine/genetics , Alleles , Amino Acid Sequence , Amino Acid Substitution , Animals , Buffaloes/immunology , Cattle , Complement C3/chemistry , Complement C3/immunology , DNA, Complementary/chemistry , DNA, Complementary/genetics , Disease Resistance/immunology , Egypt , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Genotype , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Mastitis, Bovine/immunology , Models, Molecular , Mutation , Phenotype , Polymorphism, Single Nucleotide , Protein Conformation , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL