Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(18)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37763425

ABSTRACT

The aim of this study was to investigate the effect of repeated pressing of lithium disilicate ceramic on the shear bond strength (SBS) of three types of resin cement. METHODOLOGY: A lithium disilicate ceramic (IPS e.max® Press) was first heat-pressed to form rectangular disk specimens. Then, leftovers were used for the second and third presses. A total of 90 specimens were prepared and separated, according to the number of pressing cycles, into three groups: 1st, 2nd, and 3rd presses (n = 30). Each group was further subdivided into three groups (n = 10) according to the type of resin cement used, as follows: Multilink N (MN), Variolink Esthetic DC (VDC), and Variolink Esthetic LC (VLC). All the cement was bonded to the ceramic surface, which was etched with hydrofluoric acid and primed with Monobond Plus. All samples were light-cured and stored for 24 h. Shear bond strength was tested on a universal testing machine. RESULTS: A two-way ANOVA was used to evaluate the influence of repeated pressing cycles and cement type as well as their interaction. The results indicated that cement type has a significant impact (p < 0.001) but not the number of pressing cycles (p = 0.970) or their interaction (p = 0.836). The Bonferroni post-hoc test showed that the SBS of MN was significantly higher than that of VDC and VLC in the first press and second press cycles, respectively. The SBS of MN was significantly higher than that of VDC and VLC cements in the third pressing cycle. There was no significant difference in the SBS between VLC and VDC in all three pressing cycles. CONCLUSION: The results of the current study did not report a detrimental effect of repeated pressing up to three cycles on the shear bond strength of the IPS e.max® Press. Multilink resin cement showed the highest SBS to IPS e.max® Press at the third pressing cycle. For all types of cement and heat pressing cycles, the majority of cement failures were adhesive. No cohesive failures occurred in any of the tested resin cements, regardless of the cement type or the number of heat pressing cycles tested.

2.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234124

ABSTRACT

The aim of this study was to investigate the effect of repressing leftover heat-pressed lithium disilicate material on its mechanical and optical properties. A lithium disilicate ingot (IPS e.max® Press, IvoclarVivadent, Schaan, Liechtenstein) shade (A1) low translucency was first heat-pressed to yield ceramic bars and disks. Then, the second and third presses were fabricated from the leftovers of the previous pressing cycles. A total of 36 bars and 15 disk specimens were fabricated and divided into three groups according to the number of pressing cycles (n = 12 bars and n = 5 disks): P1: first press (control), P2: second press, and P3: third press. The specimens were tested for flexural strength, color change, Vickers hardness, and surface topography under scanning electron microscopy. One-way ANOVA testing was used to evaluate flexural strength and hardness, while an independent t-test was performed to evaluate color change. There was no significant difference in flexural strength as the number of heat-pressed cycles increased (p = 0.283). Similarly, there was no significant difference in the microhardness values between all groups (p = 0.220). The overall color change ∆E between P1-P2 and P1-P3 were 2.01 and 2.14, respectively. The SEM images showed evenly distributed and densely packed lithium disilicate crystals in the P1 group. However, larger and less densely packed crystals were noticeable in P2 and P3. The IPS e.max Press could be repressed up to two times without an adverse effect on mechanical properties or color stability. These results may support the reuse of pressed lithium disilicate for economical purposes, but further clinical evaluation should be conducted to confirm these findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...