Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Chem ; 17(1): 159, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986180

ABSTRACT

In this work, we focused on the 3rd goal of the sustainable development plan: achieving good health and supporting well-being. Two redox-active hydrazo ligands namely, phenylcarbonohydrazonoyldicyanide (PCHD) and pyridin-4-ylcarbonohydrazonoyl-dicyanide (PyCHD), and their copper(I) complexes have been synthesized and characterized. The analytical data indicates the formation of copper(I) complexes despite starting with copper(II) perchlorate salt. The 1H-NMR and UV-visible spectral studies in DMSO revealed that PyCHD mainly exists in its azo-form, while PCHD exists in azo ↔ hydrazo equilibrium form, and confirmed the copper(I) oxidation state. XPS, spectral and electrochemistry data indicated the existence of copper(I) valence of both complexes. Cyclic voltammetry of PCHD and its copper(I) complex supported the reduction power of the ligand. The antimicrobial activity, cytotoxicity against the mammalian breast carcinoma cell line (MCF7), and DNA interaction of the compounds are investigated. All compounds showed high antimicrobial, and cytotoxic activities, relative to the standard drugs. Upon studying the wheat DNA binding, PCHD and PyCHD were found to bind through external contacts, while both [Cu(PCHD)2]ClO4.H2O and [Cu(PyCHD)2]ClO4.H2O were intercalated binding. In-silico molecular docking simulations against Estrogen Receptor Alpha Ligand Binding Domain (ID: 6CBZ) were performed on all produced compounds and confirmed the invitro experimentally best anticancer activity of [Cu(PyCHD)2]ClO4.H2O. The molecular docking tests against SARS-CoV-2 main protease (ID: 6 WTT) showed promising activity in the order of total binding energy values: [Cu(PCHD)2]ClO4.H2O > [Cu(PyCHD)2]ClO4.H2O > PCHD > PyCHD.

2.
Molecules ; 27(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35889457

ABSTRACT

An unexpected trinuclear Cu(II)-thiazolidine complex has been synthesized by mixing CuCl2·2H2O with the Schiff base ligand, 1-(((4,5-dihydrothiazol-2-yl)ethylidene)hydrazono)methyl)phenol L, in ethanol. Unexpectedly, the reaction proceeded via the hydrolysis of the Schiff base L, followed by cyclization to afford 3-methyl-5,6-dihydrothiazolo[3,2-c][1,2,3]triazole (La), then complexation with the Cu(II) salt, forming the trinuclear [Cu3(La)4(Cl)6] complex. The complex was characterized by means of FTIR spectra, elemental analysis, and X-ray crystallography. In the trinuclear [Cu3(La)4(Cl)6] complex, there are two crystallographically independent hexa- and penta-coordinated Cu(II) sites, where the thiazolidine ligand La units act as a monodentate ligand and a linker between the Cu(II) centers. The crystal packing of the [Cu3(La)4(Cl)6] complex is primarily affected by the weak non-covalent C-H∙∙∙Cl interactions. In accordance with Hirshfeld surface analysis, the Cl∙∙∙H, H∙∙∙H, S∙∙∙H, and N∙∙∙H percentages are 31.9%, 27.2%, 13.5%, and 9.9%, respectively. X-ray photoelectron spectroscopy confirmed the oxidation state of copper as Cu(II), as well as the presence of two different coordination environments around copper centers. The complex showed interesting antibacterial activity against the Gram-positive bacteria S. subtilis, with MIC = 9.7 µg/mL compared to MIC = 4.8 µg/mL for the control, gentamycin. Moreover, the Cu(II) complex showed an equal MIC (312.5 µg/mL) against C. albicans compared to ketoconazole. It also exhibits a very promising inhibitory activity against colon carcinoma (IC50 = 3.75 ± 0.43 µg/mL).


Subject(s)
Copper , Schiff Bases , Candida albicans , Copper/chemistry , Crystallography, X-Ray , Ligands , Schiff Bases/chemistry , Thiazolidines/pharmacology , X-Rays
3.
J Mol Microbiol Biotechnol ; 26(4): 261-8, 2016.
Article in English | MEDLINE | ID: mdl-27165413

ABSTRACT

Fifteen nonaxenic cultures of picocyanobacteria were isolated from the Arabian Gulf, from which 122 heterotrophic bacterial strains were obtained. Based on their 16S rRNA gene sequences, those strains were affiliated with 22 different species, 82.8% of which belonged to the genus Marinobacter, known to comprise hydrocarbonoclastic strains. The remaining species belonged to the genera Alcanivorax, Bacillus, Halomonas, Mesorhizobium, and Paenibacillus, and a Bacteriodetes bacterium also known to comprise hydrocarbonoclastic strains. All the picocyanobacterial cultures harbored one or more strains of Marinobacter. Marinobacter in addition to Alcanivorax and other genera isolated from those picocyanobacteria grew on Tween 80, crude oil, and pure hydrocarbons as sole sources of carbon and energy, i.e. they are related to the obligate hydrocarbonoclastic bacteria group. They consumed crude oil, n-octadecane, and phenanthrene in batch cultures. The results indicated that Marinobacter isolates seemed to grow better and consume more oil in the presence of their host picocyanobacteria than in their absence. Such natural microbial associations assumingly play a role in bioremediation of spilled hydrocarbons in the Arabian Gulf. Similar associations probably occur in other marine environments as well and are active in oil spill removal.


Subject(s)
Cyanobacteria/isolation & purification , Hydrocarbons/metabolism , Marinobacter/isolation & purification , Petroleum Pollution , Seawater/microbiology , Water Pollutants/metabolism , Arabia , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Marinobacter/classification , Marinobacter/genetics , Marinobacter/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...