Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 71: 101511, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33725649

ABSTRACT

The interrelationship between gasotransmitters and oxidative stress, inflammation and apoptosis in lead-induced hepatotoxicity was investigated in this study. On prolonged exposure, lead was accumulated in liver tissue of rats and impaired liver function and structure as assessed by measurement of the serum hepatic function markers and by histopathological examination. The accumulated metal induced oxidative stress, inflammation and apoptosis in the liver. Also, it increased nitric oxide (NO) production and decreased hydrogen sulfide (H2S) level and heme oxygenase (HO-1) concentration in liver tissue. Decreasing of NO production by L-N(G)-nitroarginine methyl ester (L-NAME) and increasing of H2S level by sodium hydrosulfide (NaHS) and carbon monoxide (CO) level by carbon monoxide-releasing molecule-A1 (CORM-A1) inhibited lead-induced impairment of liver function and structure. Concomitantly, these agents inhibited lead intoxication-induced oxidative stress, inflammation, apoptosis, nitrosative stress and reduction of HO-1 concentration and H2S level. Furthermore, concurrent treatment with these agents inhibited lead intoxication-induced increase in the protein expressions of inducible NO synthase, tumor necrosis factor-alpha, interleukin-1beta and caspase-3 as well as decrease in protein expressions of HO-1 and cystathionine-γ-lyase in the liver. NO donor, l-arginine and H2S and CO biosynthesis inhibitors, trifluoro-DL-alanine and zinc deutroporphyrin, respectively aggravated the toxic effects of lead. These results indicate, for the first time, that there is an interrelationship between gasotransmitters and lead-induced hepatotoxicity. The ability of L-N AME, NaHS and CORM-A1 to provide protective effects against lead-induced hepatotoxicity may positively correlate, to their ability to suppress hepatic oxidative stress, nitrosative stress, inflammation and apoptosis.


Subject(s)
Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Gasotransmitters/metabolism , Lead/toxicity , Nitrosative Stress/drug effects , Animals , Cytokines/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Male , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar
2.
Toxicol Lett ; 310: 39-50, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30980911

ABSTRACT

This study explored the role of gasotransmitters in lead-induced nephrotoxicity. Long-term exposure of rats to lead resulted in its accumulation in kidney. The accumulated metal impaired kidney function and structure. Lead intoxication resulted in oxidative stress, inflammation and apoptosis in kidney. In addition, it resulted in nitric oxide (NO) overproduction and decrease in hydrogen sulfide (H2S) level and heme oxygenase (HO-1) concentration in kidney. Inhibition of NO overproduction by L-N(G)-nitroarginine methyl ester (L-NAME) and increasing of H2S level by sodium hydrosulfide (NaHS) and CO level by carbon monoxide-releasing molecule-A1 (CORM-A1) inhibited lead-induced impairment of kidney function and structure. These agents inhibited lead-intoxication induced oxidative stress, inflammation, apoptosis, nitrosative stress and reduction of H2S level and HO-1 concentration. Also, concomitant treatment with these agents inhibited lead intoxication-induced increase in protein expressions of inducible NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß) and caspase-3 as well as decrease in protein expressions of HO-1 and cystathionine- γ-lyase (CSE) in kidney. The NO donor, L-arginine and the H2S and CO biosynthesis inhibitors, trifluoro-DL-alanine and zinc deutroporphyrin, respectively produced opposite effects and aggravated the toxic effects of lead. These results demonstrate, for the first time, that gasotransmitters play an important role in lead-induced nephrotoxicity.


Subject(s)
Carbon Monoxide/metabolism , Gasotransmitters/metabolism , Hydrogen Sulfide/metabolism , Kidney Diseases/chemically induced , Kidney/drug effects , Nitric Oxide/metabolism , Organometallic Compounds/toxicity , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cytokines/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Inflammation Mediators/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Rats, Wistar , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...