Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 341: 139979, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37659517

ABSTRACT

Over the past 50 years, the emergence of plastic waste as one of the most urgent environmental problems in the world has given rise to several proposals to address the rising levels of contaminants associated with plastic debris. Worldwide plastic production has increased significantly over the last 70 years, reaching a record high of 359 million tonnes in 2020. China is currently the world's largest plastic producer, with a share of 17.5%. Of the total marine waste, microplastics account for 75%, while land-based pollution accounts for responsible for 80-90%, and ocean-based pollution 10-20% only in overall pollution problems. Even at small dosages (10 µg/mL), microplastics have been found to cause toxic effects on human and animal health. This review examines the sources of microplastic contamination, the prevalent reaches of microplastics, their impacts, and the remediation methods for microplastic contamination. This review explains the relationship between the community composition and the presence of microplastic particulate matter in aquatic ecosystems. The interaction between microplastics and emerging pollutants, including heavy metals, has been linked to enhanced toxicity. The review article provided a comprehensive overview of microplastic, including its fate, environmental toxicity, and possible remediation strategies. The results of our study are of great value as they illustrate a current perspective and provide an in-depth analysis of the current status of microplastics in development, their test requirements, and remediation technologies suitable for various environments.


Subject(s)
Environmental Restoration and Remediation , Microplastics , Animals , Humans , Plastics , Ecosystem , Environmental Pollution
2.
Chemosphere ; 338: 139432, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37419154

ABSTRACT

In this research, novel Bi2WO6/MWCNT nanohybrids were synthesized via a cost-effective hydrothermal route. The photocatalytic performance of these specimens was tested through the photodegradation of Ciprofloxacin (CIP) under simulated sunlight. Various physicochemical techniques systematically characterized the prepared pure, Bi2WO6/MWCNT nanohybrid photocatalysts. The XRD and Raman spectra revealed the structural/phase properties of Bi2WO6/MWCNT nanohybrids. FESEM and TEM pictures revealed the attachment and distribution of plate-like Bi2WO6 nanoparticles along the nanotubes. The optical absorption and bandgap energy of Bi2WO6 was affected by the addition of MWCNT, which was analyzed by UV-DRS spectroscopy. The introduction of MWCNT reduces the bandgap value of Bi2WO6 from 2.76 to 2.46 eV. The BWM-10 nanohybrid showed superior photocatalytic activity for CIP photodegradation; 91.3% of CIP was degraded under sunlight irradiation. The PL and transient photocurrent test confirm that photoinduced charge separation efficiency is better in BWM-10 nanohybrids. The scavenger test indicates that h+ & •O2 have mainly contributed to the CIP degradation process. Furthermore, the BWM-10 catalyst demonstrated outstanding reusability and firmness in four successive cycles. It is anticipated that the Bi2WO6/MWCNT nanohybrids will be employed as photocatalysts for environmental remediation and energy conversion. This research presents a novel technique for developing an effective photocatalyst for pollutant degradation.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Photochemical Processes , Sunlight , Ciprofloxacin/chemistry , Photolysis , Nanostructures/chemistry , Spectrum Analysis, Raman , Environmental Pollutants/chemistry , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...