Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 15(5): e38637, 2023 May.
Article in English | MEDLINE | ID: mdl-37284395

ABSTRACT

INTRODUCTION: The oral cavity is considered to be one of the most intricate environments in the human body. It is known to harbor commensal microorganisms that do not cause diseases, such as Candida albicans, a yeast fungus that has a carriage rate that tends to increase with age. It is worth noting that C. albicans can be readily identified within the flora of the gastrointestinal tract in 80% of healthy patients. Traditional medicine has alternatively been shown to play a key role in various health amenities with a wide spectrum anti-microbial effect against various yeast molds. OBJECTIVES: To evaluate the antifungal efficacy of pure garlic, onion, and lemon juice extracts against C. albicans. Materials and methods: C. albicans (ATCC 10231) were sub-cultured in brain agar followed by anaerobic incubation for 48 hours at 37°C. Ten plates were used for each of the materials studied to evaluate their antifungal efficacy against C. albicans. The efficiency of commercially available fresh garlic, onion, and lemon was tested in isolation against C. albicans. One-way ANOVA and chi-square were used for comparison between the different materials. The inhibition zone was measured, and the level of statistical significance was set at ≤0.05. RESULTS: The diameter of inhibition zones has been measured along the vertical and horizontal axis. No inhibition zones were observed for the onion and lemon extracts used in this study whereas the garlic extract exhibited inhibition zones with altered sizes (4.89 ± 0.275). A highly significant difference was observed between groups (P = 0.000) and between garlic and the other materials (P = 0.000). CONCLUSIONS: Pure garlic showed a highly significant antifungal efficacy when compared to the onion and lemon juice extracts against C. albicans. Further studies are needed using different concentrations of onion, lemon, and lemon peel juice to confirm their antifungal efficacy in addition to their actual antimicrobial benefits.

2.
Materials (Basel) ; 11(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29954116

ABSTRACT

Currently, polymethylmethacrylate (PMMA) is the most popular denture base material. Most fractures of dentures that occur during function are due to its insufficient mechanical strength. The major drawbacks of PMMA are insufficient ductility, strength, and viscoelastic behavior. The purpose of this study was to evaluate a polymethylmethacrylate denture base material modified with TiO2 nanoparticles in terms of nanomechanical, creep-recovery, and relaxation. Additionally, the effects of addition TiO2 nanoparticles on the thermal and antimicrobial adhesion behaviors were investigated. Differential scanning calorimetry and thermogravimetric analysis indicated that the effect of small amounts of TiO2 nanoparticles (1 wt. %, 2 wt. %, and 3 wt. %) on the degradation behavior of PMMA denture bases was insignificant. The nanomechanical test results of the PMMA and PMMA/TiO2 nanocomposites indicated that the hardness and modulus in the nanoscale range improved due to TiO2 addition. At a 1200-nm penetration depth, the modulus increased by 10%, 16%, and 29% and hardness increased by 18%, 24%, and 35% with the addition of 1 wt. %, 2 wt. %, and 3 wt. % TiO2, respectively. Furthermore, the creep-recovery and relaxation behaviors of PMMA were significantly improved due to the addition of TiO2. The creep strain decreased from 1.41% to 1.06%, 0.66%, and 0.49% with the addition of 1 wt. %, 2 wt. %, and 3 wt. % TiO2, respectively. The relaxation test results showed that the initial stress under 1% strain improved to 19.9, 21.2, and 22 MPa with the addition of 1 wt. %, 2 wt. %, and 3 wt. % TiO2, respectively. The improvement in the nanohardness, modulus, creep recovery, and relaxation behavior of PMMA due to the addition of TiO2 nanoparticles indicated the role of the nanoparticles in increasing the PMMA matrix stiffness by reducing its mobility and free volume. TiO2 nanoparticles also improved the antimicrobial behavior of PMMA by significantly reducing bacterial adherence with increasing TiO2 ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...