Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36770048

ABSTRACT

Hundreds of billions of aluminium-based cans are manufactured and used every year worldwide including those containing soft drinks. This study investigates and evaluates the performance and quality of two well-known energy and soft drinks brands, Green Cola and Red Bull. Recent health hazards and concerns have been associated with aluminium leakage and bisphenol A (BPA) dissociation from the can's internal protective coating. The cans were examined under four conditions, including coated and uncoated samples, the soft drink's main solution, and 0.1 M acetic acid solution. Electrochemical measurements such as potentiodynamic polarization and impedance spectroscopy (EIS), element analyses using inductively coupled plasma optical emission spectrometry (ICP-OES), and energy dispersive X-ray spectroscopy (EDS) were performed. In addition, sample characterization by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) were employed to comprehensively study and analyze the effect of corrosion on the samples. Even though the internal coating provided superior corrosion protection concerning main or acetic acid solutions, it failed to prevent aluminium from dissolving in the electrolyte. Green Cola's primary solution appears to be extremely corrosive, as the corrosion rate increased by approximately 333% relative to the acetic acid solution. Uncoated samples resulted in increases in the percentage of oxygen, the appearance of more corrosion spots, and decreases in crystallinity. The ICP-OES test detected dangerous levels of aluminium in the Green Cola solution, which increased significantly after increasing the conductivity of the solution.

2.
Materials (Basel) ; 15(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35629750

ABSTRACT

In this study, the corrosion performance of AA2014 aluminum alloy was enhanced by coating the alloy with a layer containing silica (SiC) that was formed by the plasma electrolytic oxidation (PEO) process. The PEO process was performed with different electrical parameters (frequency, current mode, and duty ratio) and both with and without SiC to investigate the microstructural and electrochemical differences in the coated samples produced from the process. The microstructure and composition of the PEO coatings were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). A potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical behavior of the AA2014-PEO-coated samples. The potentiodynamic polarization showed that the SiC-PEO-coated samples had a significantly decreased corrosion rate (99.8%) compared with the uncoated AA2014 Al alloy. Our results showed that the coats containing SiC possessed a much higher corrosion resistance than both the uncoated AA2014 Al alloy (8,344,673%) and the SiC-free coatings, which possess low corrosion resistance, because of their higher chemical stability and more compact microstructure.

3.
Heliyon ; 7(6): e07289, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34195410

ABSTRACT

Titanium oxide has been commonly used for wide range of applications due to excellent corrosion resistance. This study presents the impact of graphene oxide (GO) addition to titanium oxide as coating materials during titanium anodization process on the corrosion behaviour. The GO was prepared by electrochemical exfoliation using low voltage mode in a sodium sulphate electrolyte, which is easier and more environmentally friendly compared to the chemical approach. Raman and scanning electron microscope were used to examine the success of the exfoliation process. The surface morphologies and potentiodynamic polarization results indicate that the addition of GO significantly inhibit the pitting corrosion and stabilize passivation current densities over wide ranges of anodic potentials. The untreated titanium, however, noticeably displayed fluctuation of anodic current densities, confirming the presence of pitting corrosion. The results obtained by electrochemical impedance spectroscopy (EIS) also confirm that the addition of GO enhanced corrosion protection even at higher frequency ranges. The cyclic polarization scan results show a positive shift in the re-passivation potential Erep after the addition of GO. This work emphasizes that the addition of GO during anodization of titanium not only protect its surface from pitting corrosion but also provide a strong passive layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...