Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(47): 54432-54445, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37968934

ABSTRACT

The commercialization of ultrahigh capacity lithium-oxygen (Li-O2) batteries is highly dependent on the cathode architecture, and a better understanding of its role in species transport and solid discharge product (i.e., Li2O2) formation is critical to improving the discharge capacity. Tailoring the pore size distribution in the cathode structure can enhance the ion mobility and increase the number of reaction sites to improve the formation of solid Li2O2. In this work, the potential of hierarchical zeolite-templated carbon (ZTC) structures as novel electrodes for Li-O2 batteries was investigated by using reactive force field molecular dynamics simulation (reaxFF-MD). Initially, 47 microporous zeolite-templated carbon morphologies were screened based on microporosity and specific area. Among them, four structures (i.e., RHO-, BEA-, MFI-, and FAU-ZTCs) were selected for further investigation including hierarchical features in their structures. Discharge product cluster analysis, self-diffusivities, and density number profiles of Li+, O2, and dimethyl sulfoxide (DMSO) electrolyte were obtained to find that the RHO-type ZTC exhibited enhanced mass transfer compared to conventional microporous ZTC (approximately 31% for O2, 44% for Li+, and 91% for DMSO) electrodes. This is due to the promoted formation of small-sized product clusters, creating more accessible sites for oxygen reduction reaction and mass transport. These findings indicate how hierarchical ZTC electrodes with micro- and mesopores can enhance the discharge performance of aprotic Li-O2 batteries, providing molecular insights into the underlying phenomena.

2.
Chemosphere ; 282: 131111, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34470163

ABSTRACT

In an ever-growing attempt to reduce the excessive anthropogenic CO2 emissions, several CO2 capture technologies have been developed in recent years. Adsorption using solid carbonaceous materials is one of the many promising examples of these technologies. Carbon-based materials, notably activated carbons, are considered very attractive adsorbents for this purpose given their exceptional thermal stability and excellent adsorption capacities. More importantly, the ability to obtain activated carbons from agricultural wastes and other biomass that are readily available makes them good candidates for several industrial applications ranging from wastewater treatment to CO2 adsorption, among others. Activated carbons from biomass can be prepared using various techniques, resulting in a range of textual properties. They can also be functionalized by adding nitrogen-based groups to their structure that facilitates faster and more efficient CO2 capture. This review provides a detailed overview of the recent work reported in this field, highlighting the different preparation methods and their differences and effects on the textual properties such as pore size, surface area, and adsorption performance in terms of the CO2 adsorption capacity and isosteric heats. The prospect of activated carbon functionalization and its effect on CO2 capture performance is also included. Finally, the review covers some of the pilot-plant scale processes in which these materials have been tested. Some identified gaps in the field have been highlighted, leading to the perspectives for future work.


Subject(s)
Carbon Dioxide , Charcoal , Adsorption , Biomass , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...