Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Fitoterapia ; 176: 106024, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763410

ABSTRACT

The uncontrolled hyperglycemia that characterizes diabetes mellitus (DM) causes several complications in the organism. DM is among the major causes of deaths, and the limited efficacy of current treatments push the search for novel drug candidates, also among natural compounds. We focused our attention on caffeoylmalic acid, a phenolic derivative extracted from Urtica dioica, a plant investigated for its potential against type 2 DM. This compound was tested for its antidiabetic activity in vitro through a glucose uptake assay, in vivo in a mouse DM model and through molecular docking towards α-amylase and α-glucosidase. The effects on glucose blood level, liver enzymes, insulin and creatinine levels as well as on lipid and blood parameters, considered biochemical markers of diabetes, were also evaluated. The results showed an antidiabetic activity in vitro and in vivo, as the compound stimulates glucose absorbtion and reduces blood glucose levels. Moreover, it ameliorates lipid profile, liver and blood parameters, with moderate effect on insulin secretion. Taken together, these findings pave the way for the compounds from this class of caffeoylmalic acid as potential antidiabetic compounds.

2.
Int J Nanomedicine ; 19: 4451-4464, 2024.
Article in English | MEDLINE | ID: mdl-38799694

ABSTRACT

Introduction: Researchers are increasingly favouring the use of biological resources in the synthesis of metallic nanoparticles. This synthesis process is quick and affordable. The current study examined the antibacterial and anticancer effects of silver nanoparticles (AgNPs) derived from the Neurada procumbens plant. Biomolecules derived from natural sources can be used to coat AgNPs to make them biocompatible. Methods: UV-Vis spectroscopy was used to verify the synthesis of AgNPs from Neurada procumbens plant extract, while transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize their morphology, crystalline structure, stability, and coating. Results: UV-visible spectrum of AgNPs shows an absorption peak at 422 nm, indicating the isotropic nature of these nanoparticles. As a result of the emergence of a transmission peak at 804.53 and 615.95 cm-1 in the spectrum of the infrared light emitted by atoms in a sample, FTIR spectroscopy demonstrated that the Ag stretching vibration mode is metal-oxygen (M-O). Electron dispersive X-ray (EDX) spectral analysis shows that elementary silver has a peak at 3 keV. Irradiating the silver surface with electrons, photons, or laser beams triggers the illumination. The emission peak locations have been found between 300 and 550 nm. As a result of DLS analysis, suspended particles showed a bimodal size distribution, with their Z-average particle size being 93.38 nm. Conclusion: The findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme-positive strains (S. aureus and B. cereus) than E. coli. The biosynthesis of AgNPs is an environmentally friendly method for making nanostructures that have antimicrobial and anticancer properties.


Subject(s)
Green Chemistry Technology , Metal Nanoparticles , Silver , Theranostic Nanomedicine , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Green Chemistry Technology/methods , Humans , Theranostic Nanomedicine/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasm Invasiveness/prevention & control , Particle Size , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
3.
Front Biosci (Landmark Ed) ; 29(5): 183, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38812295

ABSTRACT

BACKGROUND: The present study aimed to investigate the in-vitro anti-diabetic, anti-cholinesterase, and anti-inflammatory potential of extracts from different parts of Ficus benghalensis, including leaves, stem, and roots, as well as isolated column fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C). METHODS: The extracts and subsequent fractions were evaluated for their inhibitory activity against key enzymes involved in diabetes [α-glucosidase and α-amylase], neurodegenerative diseases [acetylcholinesterase and butyrylcholinesterase], and inflammation (cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX)). RESULTS: The results showed that F. benghalensis leaf extract exhibited the highest α-glucosidase inhibitory activity (73.84%) and α-amylase inhibitory activity (76.29%) at 1000 µg/mL. The stem extract (65.50%) and F-B-2 C fraction (69.67%) also demonstrated significant α-glucosidase inhibitory activity. In terms of anti-cholinesterase activity, the extracts of roots, leaves, and stem showed promising inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with half maximal inhibitory concentration (IC50) values ranging from 50.50 to 474.83 µg/mL. The derived fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C) also exhibited notable inhibition of AChE and BChE, with IC50 values from 91.85 to 337.94 µg/mL. Moreover, the F-B-3 C fraction demonstrated the highest COX-2 inhibitory potential (85.72%), followed by F-B-1 C (83.13%), the stem extract (80.85%), and the leaves extract (79.00%). The F-B-1 C fraction showed the highest 5-LOX inhibitory activity (87.63%), while the root extract exhibited the lowest inhibition (73.39%). CONCLUSIONS: The results demonstrated promising bioactivity, suggesting the potential of F. benghalensis as a source of natural compounds with therapeutic applications. Further studies are required to identify and isolate the active components responsible for these effects and to evaluate their in-vivo efficacy and safety.


Subject(s)
Anti-Inflammatory Agents , Cholinesterase Inhibitors , Ficus , Hypoglycemic Agents , Plant Extracts , Ficus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Plant Leaves/chemistry , Butyrylcholinesterase/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , alpha-Amylases/antagonists & inhibitors , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/isolation & purification , Acetylcholinesterase/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Plant Roots/chemistry
4.
Nat Prod Res ; : 1-5, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712509

ABSTRACT

Pistacia chinensis is used as a decorative tree and currently studied as a source of biofuels. Besides, its parts and extracts are endowed with several therapeutic uses which have been widely explored in traditional medicine and that are related to its rich composition in phytochemicals. Molecular docking and enzymatic inhibition tests were used to study the activity of eriodictyol, a flavonoid extracted from the barks of P. chinensis, against ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and aldose reductase (ALR2). The compound was highlighted as a micromolar inhibitor in vitro (IC50 = 263.76 ± 1.32 µM and 4.21 ± 0.94 µM, respectively) and docking showed that eriodictyol efficiently targets the binding sites of the enzymes. In conclusion, this study unveils the potential of eriodictyol on enzymes that are involved in immunostimulation and in complications of diabetes mellitus.

5.
Food Sci Nutr ; 12(5): 3483-3491, 2024 May.
Article in English | MEDLINE | ID: mdl-38726429

ABSTRACT

Acacia nilotica L., also known as babul, belonging to the Fabaceae family and the Acacia genus, is typically used for ornamental purposes and also as a medicinal plant found in tropical and subtropical areas. This plant is a rich source of bioactive compounds. The current study aimed to elucidate the hypoglycemic, anti-inflammatory, and neuroprotective potential of A. nilotica's crude methanolic extract. The results of the in vitro antidiabetic assay revealed that methanolic extract of A. nilotica inhibited the enzyme α-glucosidase (IC50: 33 µg mL-1) and α-amylase (IC50: 17 µg mL-1) in a dose-dependent manner. While in the anticholinesterase enzyme inhibitory assay, maximum inhibition was shown by the extract against acetylcholinesterase (AChE) (637.01 µg mL-1) and butyrylcholinesterase (BChE) (491.98 µg mL-1), with the highest percent inhibition of 67.54% and 71.50% at 1000 µg mL-1, respectively. This inhibitory potential was lower as compared to the standard drug Galantamine that exhibited 82.43 and 89.50% inhibition at the same concentration, respectively. Moreover, the methanolic extract of A. nilotica also significantly inhibited the activities of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) in a concentration-dependent manner. The percent inhibitory activity of 5-LOX and COX-2 ranged from 42.47% to 71.53% and 43.48% to 75.22%, respectively. Furthermore, in silico, in vivo, and clinical investigations must be planned to validate the above-stated bioactivities of A. nilotica.

6.
Environ Res ; 251(Pt 2): 118675, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492838

ABSTRACT

Herein, core double-shell direct dual Z-scheme ZnO-Ce2S3-MnO2 nanocomposite was synthesized via a hydrothermal route along with pure ZnO, Ce2S3, MnO2, and characterized by numerous characterization tools for application in synthetic dyes degradation. The XRD, Raman, and FTIR analyses have confirmed the nanocomposite formation. TEM images exhibited the core double-shell morphology with an average particle diameter of 81 nm and stacking of ZnO, Ce2S3, and MnO2. EDX confirmed the existence of desired elements in the grown composition. The varied oxidation states, presence of defects, and fast charge transfer were also revealed from XPS, PL, and EIS. The ZnO-Ce2S3-MnO2 nanocomposite has an optical energy bandgap of 2.84 eV, capable of decomposing harmful dyes with excellent efficiency, 99.81% MB, 97.62% MO, 88.5% MR, and 58.9% EY in 40 min sunlight exposure. The effect of several operating parameters is also observed and obtained results showed the optimal catalyst dose was 20 mg, pH of 8, and dye concentration of 10 ppm. The scavenger's experiment suggests that •O2- and •OH are the main active radicals in the photodegradation reaction which is also evident in the dual Z-scheme formation. The MnO2 and ZnO layers covered the Ce2S3 (core) and dual Z-scheme formation allows rapid kinetics of redox reaction and provides plenteous channels for transfer of photo-generated charge carriers during photocatalysis. Thus, core double-shell direct dual Z-scheme photocatalysts having inorganic components could be an excellent choice for photocatalysis at the industrial level, particularly for water purification.


Subject(s)
Cerium , Coloring Agents , Manganese Compounds , Nanocomposites , Water Pollutants, Chemical , Zinc Oxide , Nanocomposites/chemistry , Zinc Oxide/chemistry , Coloring Agents/chemistry , Manganese Compounds/chemistry , Water Pollutants, Chemical/chemistry , Cerium/chemistry , Oxides/chemistry , Sulfides/chemistry , Catalysis
7.
Article in English | MEDLINE | ID: mdl-38549290

ABSTRACT

Cancer is one of the most demanding domains for innovative, effective, safe, and affordable therapeutically active chemicals. The main aim of this study is to research new phytochemicals with anticancer activity. The current experiment identified and analyzed six compounds for anti-cancer potential supported by molecular simulation studies. The defatted methanolic extract underwent column chromatography, resulting in the isolation of six flavonoids. These include 3,5,7,4'-tetrahydroxy-flavanone (1), naringenin (2), 3,5,4'-trihydroxy-7-methoxy-flavanone (3), sakuranetin (4), spinacetin (5), and patuletin (6). The isolated compounds (1-6) were assessed for in vitro anti-cancer activity against various cell lines such as HepG2 (hepatoma G2), A498 (kidney), NCI-H226 (lungs), and MDR2780AD (human ovarian). The maximum antiproliferative effect was against HepG2 and MDR2780AD. When compounds 6, 5, and 1 were compared to a standard anti-cancer medicine (paclitaxel) with an IC50 of 7.32, it was shown that compounds 6, 5, and 1 exhibited significant activity against HepG2 with IC50 values of 14.65, 20.87, and 27.09 µM, respectively. All tested compounds showed an IC50 of less than 1 µM and had notable effects against MDR2780 AD cell lines. Compound 6 exhibited notable potency against the HepG2, A498, and MDR2780AD cell lines, among the six compounds that were evaluated. In contrast, compound 3 demonstrated the most pronounced impact on the NCI-H226 cell line. Docking investigations were performed using tubulin as the specific target concerning PDB ID 4O2B. The six compounds under investigation interact hydrophobically and hydrophilically with tubulin-binding site amino acid residues.

8.
Sci Rep ; 14(1): 4772, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413788

ABSTRACT

Nutrient leaching is a major reason for fresh and ground water contamination. Menthol is the major bioactive ingredient of Mentha arvensis L. and one of the most traded products of global essential oil market. The indigenous production of menthol crystals in developing countries of the world can prove to be the backbone for local growers and poor farmers. Therefore, present research was designed to check the effects of nano-structured plant growth regulators (PGRs) (28-homobrassinolide and ethephon) with reduced leaching potentials on the essential oil and menthol (%) of Mentha arvensis L. The prepared nano-formulations were characterized by Fourier transform infrared (FTIR) spectroscopy, Laser induced breakdown spectroscopy (LIBS), Differential scanning colorimetry-thermal gravimetric analysis (DSC-TGA), Scanning electron microscopy (SEM), Atomic absorption spectrometry (AAS) and Zeta potential and Zeta size analysis. The menthol (%) was determined by modified spectrophotometric and gas chromatographic (GC) method. The highest essential oil (%) was obtained by the application of 28-homobrassinolide-Zn-NPs-L-II (0.92 ± 0.09%) and ethephon-Ca-NPs-L-III (0.91 ± 0.05%) as compared to the control (0.65 ± 0.03%) and blank (0.62 ± 0.09%). The highest menthol (%) was obtained by applying 28-homobrassinolide-Ca-NPs-L-I (80.06 ± 0.07%), 28-homobrassinolide-Ca-NPs-L-II (80.48 ± 0.09%) and 28-homobrassinolide-Ca-NPs-L-III (80.84 ± 0.11%) and ethephon-Ca-NPs-L-III (81.53 ± 0.17%) and ethephon-Zn-NPs-L-II (81.93 ± 0.26%) as compared to control (67.19 ± 0.14%) and blank (63.93 ± 0.17%).


Subject(s)
Mentha , Oils, Volatile , Organophosphorus Compounds , Menthol/pharmacology , Gas Chromatography-Mass Spectrometry , Oils, Volatile/chemistry , Mentha/metabolism
9.
Heliyon ; 10(2): e24267, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304837

ABSTRACT

In the current studies two naproxen derivatives (NPD) were evaluated for analgesic and anti-inflammatory properties. The acetic acid and hot plate animal models were used to screen the compounds for analgesic potential. While the anti-inflammatory potential was evaluated through animal paw edema, induced by several inflammatory mediators (carrageenan, bradykinin, and prostaglandin E2), the xylene-induced ear edema was also used as an inflammatory model. Both NPDs showed significant (p < 0.001) antinociceptive effects in the acetic acid-induced writhing paradigm. In the case of the hot plate, the NPD 1 at the tested dose of 5 mg/kg enhanced the latency time after 60 min of injection, which remained significant (p < 0.001) up to the end of the experiment duration. The maximum percent inhibition of NPD 1 was 87.53. The naloxone injection significantly lowered the latency time of NPD 1 as compared to NPD 2. Regarding the anti-inflammatory effect, both of the tested NPDs demonstrated a significant reduction in paw edema against various inflammatory mediators, as mentioned above; however, the anti-inflammatory effect of NPD 1 was better. The maximal percent inhibition by NPD 1 and 2 was 43.24 (after 60 min) and 45.93 (after 90 min). A considerable effect also resulted from xylene-induced ere edema. Further, a molecular docking study was carried out to investigate the binding modes of the NPD. The docking analysis revealed that the NPD significantly interacted with the COX2 enzyme. Furthermore, molecular dynamics simulation was carried out for the docked complexes. The MD simulation analysis revealed the high stability of the two naproxen derivatives.

10.
Heliyon ; 10(3): e25384, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352791

ABSTRACT

Traditional herbal medicines and health supplements have been empirically used to treat various disorders but most of them are not standardized and have not been experimentally validated for safety and efficacy. In the present study, various dosage forms of traditional herbal medicines prescribed for specific diseases were collected from local practitioners at different districts of Khyber Pakhtunkhwa, Pakistan. The collected samples were analyzed for heavy metal, trace elements, and minerals using atomic absorption spectroscopy. All the tested samples contained heavy metals, trace elements and minerals in different concentrations. All the samples were tested positive for the presence of toxic heavy metals such as arsenic (As), cadmium (Cd) and lead (Pb). The trace elements like cobalt (Co), iron (Fe), zinc (Zn) and chromium (Cr) were also detected in acceptable range. Similarly, the samples analyzed were rich in some of the essential minerals such as sodium (Na), magnesium (Mg) and calcium (Ca) which are necessary for the proper functioning of the body. The hazard quotient (HQ) values were measured for toxic heavy metals to determine their safe ranges for human body. The HQ values were above the permissible range for arsenic (As) in all detected samples while for cadmium (Cd) and lead (Pb), the values ware above in 50 % of the analyzed samples. The detection of toxic metals and their HQ values beyond the permissible limits in different dosage forms raised questions about their quality. This study suggests that evaluation of traditional herbal remedies for the metals contents and their standardization are strongly recommended for quality assurance and protection of public health.

11.
Ir J Med Sci ; 193(1): 73-83, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37515684

ABSTRACT

OBJECTIVE: The COVID-19 pandemic has been recognized as severe acute respiratory syndrome, one of the worst and disastrous infectious diseases in human history. Until now, there is no cure to this contagious infection although some multinational pharmaceutical companies have synthesized the vaccines and injecting them into humans, but a drug treatment regimen is yet to come. AIM: Among the multiple areas of SARS-CoV-2 that can be targeted, protease protein has significant values due to its essential role in viral replication and life. The repurposing of FDA-approved drugs for the treatment of COVID-19 has been a critical strategy during the pandemic due to the urgency of effective therapies. The novelty in this work refers to the innovative use of existing drugs with greater safety, speed, cost-effectiveness, broad availability, and diversity in the mechanism of action that have been approved and developed for other medical conditions. METHODS: In this research work, we have engaged drug reprofiling or drug repurposing to recognize possible inhibitors of protease protein 6M03 in an instantaneous approach through computational docking studies. RESULTS: We screened 16 FDA-approved anti-viral drugs that were known for different viral infections to be tested against this contagious novel strain. Through these reprofiling studies, we come up with 5 drugs, namely, Delavirdine, Fosamprenavir, Imiquimod, Stavudine, and Zanamivir, showing excellent results with the negative binding energies in Kcal/mol as - 8.5, - 7.0, - 6.8, - 6.8, and - 6.6, respectively, in the best binding posture. In silico studies allowed us to demonstrate the potential role of these drugs against COVID-19. CONCLUSION: In our study, we also observed the nucleotide sequence of protease protein consisting of 316 amino acid residues and the influence of these pronouncing drugs over these sequences. The outcome of this research work provides researchers with a track record for carrying out further investigational procedures by applying docking simulations and in vitro and in vivo experimentation with these reprofile drugs so that a better drug can be formulated against coronavirus.


Subject(s)
COVID-19 , Humans , Antiviral Agents , SARS-CoV-2 , Drug Repositioning/methods , Pandemics , Molecular Docking Simulation , Peptide Hydrolases/pharmacology
12.
Int Dent J ; 74(2): 310-320, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37953188

ABSTRACT

OBJECTIVE: This study aimed at recording therapeutic plant species used by inhabitants to treat dental disorders in the district of North Waziristan, Pakistan. The indigenous people of the studied area are dependent on medicinal plants for their basic health care needs including dental care. METHODS: Ethnomedicinal data were collected using a semi-structured questionnaires, and in addition 130 local informants were interviewed. The collected data were evaluated using various quantitative indices, including use value (UV), relative frequency of citation (RFC), fidelity level (FL%), and Jaccard Index (JI). RESULTS: A total of 69 plants belonging to 48 plant families used in dental disorders were identified. The Lamiaceae was the leading family that shared 7 species, followed by Solanaceae (4 spp).The dominant life form used was herbs (47.83%), folowed by leaves (43.90%) in preparing remedies for different dental disorders. Decoction was the most common mode of preparation (34.21%), followed by pastes (21.05%). The highest RFC (0.36) was reported for Bergenia ciliata, followed by Salvadora oleoides (0.35). The majority of the plants (36 spp) were utilised as herbal medicine to treat toothache, followed by 13 species for periodontal (gum) infections, 11 species used for teeth cleaning, and 9 species for halitosis (bad breath). CONCLUSIONS: This study is the first-ever record of ethnomedicinal applications for the treatment of dental diseases from Pakistan. Some of the forgeoing hebal medications should be further evalauted for the development of pahrmaceutical bio-products for the treatment of dental disorders.


Subject(s)
Plants, Medicinal , Humans , Phytotherapy , Pakistan , Medicine, Traditional , Surveys and Questionnaires
13.
Heliyon ; 9(12): e22575, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046163

ABSTRACT

Medicinal plants are the main source of active chemical constituents responsible for curing or mitigating various ailments. To discover new, safe, and effective drug candidates the isolation and screening of natural products are essential. In the current research work, lapachol was isolated from Fernandoa adenophylla, which was evaluated for anti-inflammatory effect followed by molecular docking. The isolated compound was tested for anti-inflammatory effects using in vitro (HRBC assay) and in vivo (xylene-induced ear edema) experimental models. Various concentrations of lapachol demonstrated anti-inflammatory effects with a percent potential of 77.96 at 100 µM. Different concentrations of Lapachol demonstrated a dose-dependent anti-edematous effect with a maximum percent effect of 77.9 % at a higher dose. The histopathological study revealed that the application of xylene led to a significant increase in ear thickness, along with clear signs of ear edema and infiltration of inflammatory cells, as well as epidermal hyperplasia of the dermis when compared to the control group. However, treatment with the investigated compound showed a significant reduction in ear thickness and pathological differences comparable to those observed in the group treated with diclofenac. Density functional theory calculations are accomplished to gain insight into structural and spectroscopic properties. Geometry optimization, FMO, and MEP analyses are performed. Overall, the molecular docking results indicate that lapachol has potential as a COX inhibitor by binding to the active sites of both COX-1 and COX-2 enzymes.

14.
Front Chem ; 11: 1268949, 2023.
Article in English | MEDLINE | ID: mdl-38025066

ABSTRACT

Introduction: Natural antioxidants are vital to promote health and treat critical disease conditions in the modern healthcare system. This work adds to the index of natural medicines by exploring the antioxidant potential of Dodonaea viscosa Jacq. (Plant-DV). Material and Methods: The aqueous extract of leaves and flower-containing seeds from plant-DV in freshly prepared phosphate buffer is evaluated for antioxidant potential. In vitro antioxidant potential of the nascent and oxidatively stressed extracts was analyzed through glutathione (GSH) assay, hydrogen peroxide (H2O2) scavenging effect, glutathione-S-transferase (GST) assay, and catalase (CAT) activity. In vivo therapeutic assessment is performed in Wistar Albino rats using vitamin C as a positive control. The livers and kidneys of individual animals are probed for glutathione, glutathione-S-transferase, and catalase activities. Results: flower-containing seeds have GSH contents (59.61 µM) and leaves (32.87 µM) in the fresh aqueous extracts. The hydrogen peroxide scavenging effect of leaves is superior to flower-containing seeds with 17.25% and 14.18% respectively after 30 min incubation. However, oxidatively stressed extracts with Ag(I) and Hg(II) show declining GSH and GST levels. The plant extracts are non-toxic in rats at 5000 mg/Kg body weight. Liver and kidneys homogenate reveal an increase in GSH, GST, and CAT levels after treatment with 150 ± 2 mg/kg and 300 ± 2 mg/kg body weight plant extract compared with normal saline-treated negative and vitamin C treated positive control. Discussion: The crude aqueous extracts of leaves and flower-containing seeds of plant-DV show promising antioxidant potential both in in vitro and in vivo evaluation.

15.
Nat Prod Res ; : 1-6, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882376

ABSTRACT

Iphiona grantioides (Boiss) Anderb. is a medicinal plant featuring several traditional uses. Nevertheless, this plant has not been widely investigated by modern medicinal chemistry yet, as also the properties of its extracts.In this study, we report the extraction of the essential oil by hydrodistillation from the leaves of I. grantioides. This was characterised by GC-MS analysis and ten chemical constituents were identified.Our findings demonstrate that the essential oil is effective in inhibiting the growth of bacterial strains, and of Klebsiela pneumonia and Staphylococcus aureus in particular. Additionally, its antioxidant properties were evaluated, and it showed radical scavenging activity in vitro.

16.
Front Biosci (Landmark Ed) ; 28(9): 216, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37796717

ABSTRACT

BACKGROUND: The aim of the current study was to investigate the anticancer potential of bioactive compounds isolated from the leaves of Olea ferruginea (O. ferruginea). Lignans from O. ferruginea were previously described to possess antibacterial, antileishmanial, and antioxidant properties. Nevertheless, the antiproliferative activity of cycloolivil (1), ferruginan (2), and ferruginan A (3) have not been investigated in depth. METHODS: The compounds were isolated from the ethyl acetate fraction of the leaves extract of O. ferruginea. The isolated molecules were evaluated for their anticancer activity against U-87 MG malignant glioma cells. In parallel, molecular docking studies were also performed to investigate the interaction of the compounds with a duplex DNA sequence and epidermal growth factor receptor (EGFR). RESULTS: In vitro tests showed that all three compounds inhibit U-87 MG malignant glioma cell proliferation dose-dependently in the µM range, and ferruginan A (3) was highlighted as the most promising compound of the set. Molecular docking studies showed that the compounds could interfere with double stranded DNA possessing a cisplatin 1,2-d(GpG) intrastrand cross-link and EGFR. CONCLUSIONS: Overall, the findings suggest that the tested compounds from O. ferruginea may represent a starting point for the identification of novel tools to inhibit glioma cell proliferation.


Subject(s)
Glioma , Lignans , Olea , Lignans/pharmacology , Plant Extracts/pharmacology , Molecular Docking Simulation , ErbB Receptors
17.
Fitoterapia ; 171: 105703, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852388

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease linked to memory impairment. A current investigation was performed to assess the neuroprotective effect of Diospyrin, a novel therapeutic agent, for the curing of Alzheimer's disease. For this purpose, in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory assays and antioxidant studies were conducted, whereas in-vivo studies involved different behavioral animal models tests such as elevated plus maze (EPM), morris water maze (MWM) and paddling Y-maze test. Results of the in-vitro analysis showed IC50 values of 95 µg/mL for AChE and 110 µg/mL for BChE as compared to the standard drug donepezil (IC50: 95 & 85 µg/mL, respectively). DPPH antioxidant assay showed a maximum of 72.85% inhibition (IC50: 139.74 µg/mL) of DPPH-free radicals at the highest concentration of 1000 µg/mL as compared to the ascorbic acid (IC50: 13.72 µg/mL). Moreover, the in-vivo analysis revealed that diospyrin treatment demonstrated gradual betterment in memory and enhanced motor functionality. On the other hand, the computational analysis also showed that the diospyrin had exceptional binding affinities for both AChE and BChE enzymes. In the net shell, it may be deduced that our compound diospyrin could be a valuable drug candidate in managing neurodegenerative disorders like AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Animals , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Antioxidants/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/therapeutic use , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Molecular Structure , Neuroprotective Agents/pharmacology , Molecular Docking Simulation
18.
Molecules ; 28(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894627

ABSTRACT

A significant issue in developing metal-catalyzed plastic polymer materials is obtaining distinctive catalytic characteristics to compete with current plastics in industrial commodities. We performed first-principle DFT calculations on the key insertion steps for industrially important monomers, vinyl fluoride (VF) and 3,3,3-trifluoropropene (TFP), to explain how the ligand substitution patterns affect the complex's polymerization behaviors. Our results indicate that the favorable 2,1-insertion of TFP is caused by less deformation in the catalyst moiety of the complexes in contrast to the 1,2-insertion mode. In contrast to the VF monomer, the additional interaction between the fluorine atoms of 3,3,3-trifluoropropene and the carbons of the catalyst ligands also contributed to favor the 2,1-insertion. It was found that the regioselectivity of the monomer was predominated by the progressive alteration of the catalytic geometry caused by small dihedral angles that were developed after the ligand-monomer interaction. Based on the distribution of the 1,2- and 2,1-insertion products, the activity and selectivity were influenced by the steric environment surrounding the palladium center; thus, an increased steric bulk visibly improved the selectivity of the bulkier polar monomer (TFP) during the copolymerization mechanism. In contrast, better activity was maintained through a sterically less hindered Pd metal center; the calculated moderate energy barriers showed that a catalyst with less steric hindrance might provide an opportunity for a wide range of prospective industrial applications.

19.
Heliyon ; 9(8): e19160, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37636438

ABSTRACT

In the current research work, an amide based metal carboxylate chemical ([((5-((5-(2-hydroxyethyl)-4-methylthiazol-3-ium-3-yl)methyl)-2-methylpyrimidin-4-yl)amino)bis((4-((4-methoxy-2-nitrophenyl)amino)-4-oxobutanoyl)oxy)zinc]) was identified as anti-diabetic analgesic and anti-inflammatory. The identified chemical(MT-1) was tested for acute toxicity (the MT-1 was fund safe), antidiabetic analgesic, and anti-inflammatory potentials. The in-vitro study was conducted for antidiabetic enzyme inhibition (α-amylase and α-glucosidase) and the in-vivo studies included analgesic (acetic acid-induced writing and hot plate model) and anti-inflammatory (carrageenan etc induced edema) effects. The tested compound showed 88.63% (IC50 = 3.23 µg/ml) and 89.10%(IC50 = 5.10 µg/ml) againstα-amylase and α-glucosidase respectively. A significant (p < 0.001) analgesic effect was noted by MT-1 in acetic acid-induced animal models with a percent effect of 86.00, 60.,06, and 55.29 at the tested doses of 20, 1,0, and 5 mg/kg respectively. In the case of the hot plate model, the MT-1 showed a significant (p < 0.001) effect with maximum percent prolongation in latency observed after 60 min.08, 22.2,9, and 11.61) against 20, 1,0, and 5 mg/kg. The analgesic effect in the hot plate model was significantly (p < 0.01) reversed by the injection of naloxone (0.125 mg/kg). The paw edema induced by carrageenan, histamine, bradykinin, arachidonic acid, and PGE2 was significantly antagonized with percent attenuation of 34.09, 33.57, 34.60, 34.14, and 48.04 respectively. Furthermore, to predict the interactions between the MT-1 compound and COX-2 molecular docking was carried out and the result was compared with the standard compound. The docking score of MT-1 was predicted as -6.30 while that of Diclofenac was predicted as -6.82. Both compounds made several hydrogen bond interactions with the active site of the COX-2 enzyme. The docking study revealed the potent inhibitory potential of the compound MT-1 against the COX-2 receptor.

20.
Materials (Basel) ; 16(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37445026

ABSTRACT

Acetylation of glycerol to yield monoacetin (MAT), diacetin (DAT), and triacetin (TAT) over NiO-supported CeO2 (xNiO/CeO2) catalysts is reported. The catalysts were synthesized utilizing a sol-gel technique, whereby different quantities of NiO (x = 9, 27, and 45 wt%) were supported onto the CeO2 substrate, and hexadecyltrimethylammonium bromide (CTABr) served as a porogen. The utilization of EDX elemental mapping analysis confirmed the existence of evenly distributed Ni2+ ion and octahedral NiO nanoparticles on the CeO2 surface through the DRS UV-Vis spectroscopy. The most active catalyst is 27NiO/CeO2 based on TAT selectivity in the glycerol acetylation with ethanoic acid, attaining 97.6% glycerol conversion with 70.5% selectivity to TAT at 170 °C with a 1:10 glycerol/ethanoic acid molar ratio for 30 min using a non-microwave instant heating reactor. The 27NiO/CeO2 is reusable without significant decline in catalytic performance after ten consecutive reaction cycles, indicating high structure stability with accessible active acidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...