Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 22(1): 173, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670273

ABSTRACT

BACKGROUND: Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS: FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1ß expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1ß expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS: These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.


Subject(s)
Nanoparticles , Seaweed , Selenium , Animals , Rats , Antioxidants , Cyclooxygenase 2 , Anti-Inflammatory Agents , Antibodies
2.
Saudi Pharm J ; 31(8): 101690, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37457369

ABSTRACT

Lisinopril (LIS) is antihypertensive drug, classified as a class III drug with high water solubility and low permeability. To overcome the low permeability, 32 factorial designs aimed to formulate LIS as a sustained-release (LIS-SR) matrix pellet by extrusion/spheronization. Matrix pellets were composed of wet mass containing Avicel® and polymeric matrix polymers (sodium alginate (SA) and chitosan (CS)). Evaluation of the effect of two independent variables, matrix-forming units (SA and CS) on mean line torque, on pellet size, dissolution rate after 6 h, and mucoadhesion strength of the pellets were assessed using Statgraphics software. The tested formulations (F1-F9) showed that mean line torque ranged from 1.583 to 0.461 Nm, with LIS content in the LIS-SR pellets ranged from 87.9 to 103%, sizes varied from 1906 to 1404 µm and high percentages of drug released from pellets formulations (68.48 to 74.18 %), while the mean zeta potential value of mucoadhesive range from -17.5 to -22.9 mV. The selection of optimized formulation must have the following desirability: maximum peak torque, maximum pellets' particle size, and minimum % LIS release after 6hr. LIS optimized sustained release pellet formula composed of 2,159 % SA and 0.357 % CS was chosen as optimized formula. It's showed a 1.055 Nm mean line torque was responsible for the increased pellet size to 1830.8 µm with decreased release rate 56.2 % after 6 hr, and -20.33 mV average mucin zeta potential. Ex-vivo mucoadhesion studies revealed that that the optimize formulation, exhibited excellent mucoadhesive properties, after 1 h, about 73% of the pellets were still attached to the mucus membrane. Additionally, ex-vivo permeation determination of LIS from the optimized LIS-SR formulation was found to be significantly higher (1.7-folds) as compared to free LIS. In conclusion: LIS-SR matrix pellets, prepared with an extrusion/spheronization have desirable excellent characteristics in-vitro and ex-vivo sustained-release pellet formulation of LIS-SR was able to sustain the release of LIS for up to 8 h.

3.
Saudi Pharm J ; 31(4): 547-553, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37063445

ABSTRACT

Background: Ruboxistaurin (RBX) used to treat retinopathy in diabetic patients which caused by microvascular damage and leakage which contributes to visual loss. There are no published studies on the use of liquid chromatography-tandem mass spectrometry for development and validation of a simple, sensitive, and accurate method for measuring RBX in rat plasma. Method: Chromatographic separation of RBX was achieved using ultra-performance liquid chromatography. Multiple-reaction monitoring quantification used RBX [M + H] + ion at m/z 469.18 and daughter ions at m/z 84, 58.12, and 98.10. Atorvastatin was used as internal standard (IS), has a single daughter ion, and was identified using m/z 559.6 â†’ 249.9. Validation of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for RBX in rat plasma for linearity (greater than0.997) was carried out at 25-1000 ng/mL. Results: In rat plasma, the accuracy was within 3.4%, and the intra- and inter-day precision was within 11.8%. Stability, recovery, and matrix effect were all within acceptable limits. The drug retention time (0.85 ± 0.03 min) was remarkably short. Conclusion: The method developed in the current study is suitable to quantify RBX in plasma or bulk doses.

5.
Int J Gen Med ; 14: 3225-3233, 2021.
Article in English | MEDLINE | ID: mdl-34267540

ABSTRACT

OBJECTIVE: Metformin (MET), an oral biguanide agent, can improve insulin resistance and decrease hepatic glucose production, leading to a reduction in blood-sugar levels. The objective of the present study was to develop and validate simple and rapid LC-MS/MS method for analysis of MET in dried blood spot (DBS) sample for patient monitoring studies purposes (drug adherence). METHODS: The chromatographic separation was achieved with Waters HSS-T3 column using gradient elution of mobile phases of two solvents: 1) solvent A, consisted of 10mM ammonium formate, 0.2% formic acid 1%; and 2) acetonitrile solvent B, contained 0.2% formic acid in acetonitrile at a flow rate of 0.2 mL/min. The total run time was 3.0 min. The effectiveness of chromatographic conditions was optimized, and afatinib was used as the internal standard. The assay method was validated using USP 26 and the ICH guidelines. RESULTS: The method showed good linearity in the range 8-48 ng/mL for MET with correlation coefficient (r) >0.9907. The intra- and inter­day precision values for MET met the acceptance criteria as per regulatory guidelines. MET was stable during the stability studies at ambient temperature 25 °C, at refrigerator 4 °C, at 10 °C autosampler, freeze/thaw cycles and 30 days storage in a freezer at -30 ± 0.5 °C. CONCLUSION: This method has successfully fulfilled all validation requirements referring to EMA and FDA guidelines, and successfully can be applied for MET adherence study. All the six studied patients were approved to metformin adherence.

6.
Curr Pharm Des ; 27(25): 2904-2914, 2021.
Article in English | MEDLINE | ID: mdl-34139976

ABSTRACT

Ulcerative colitis (UC) is one of the main subtypes of inflammatory bowel disease. UC has a negative effect on patients' quality of life, and it is an important risk factor for the development of colitis-associated cancer. Patients with UC need to take medications for their entire life because no permanent cure is available. Therefore, approaches that target messenger RNA (mRNA) of proinflammatory cytokines and/or anti-inflammatory cytokines are needed to improve the safety of UC therapy and promote intestinal mucosa recovery. The major challenge facing RNA interference-based therapy is the delivery of RNA molecules to the intracellular space of target cells. Moreover, nonspecific and systemic protein expression inhibition can result in adverse effects and low therapeutic benefit. Thus, it is important to develop an efficient delivery strategy targeting the cytoplasm of target cells to avoid side effects caused by off-target protein expression inhibition. This review focuses on the most recent advances in the targeted nano delivery systems of siRNAs and mRNA that have shown in vivo efficacy.


Subject(s)
Colitis, Ulcerative , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Humans , Intestinal Mucosa , Quality of Life , RNA Interference , RNAi Therapeutics
7.
AAPS PharmSciTech ; 22(5): 161, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34031791

ABSTRACT

Atorvastatin (ATV) is a poorly water-soluble drug that exhibits poor oral bioavailability. Therefore, present research was designed to develop ATV solid dispersions (SDs) to enhance the solubility, drug release, and oral bioavailability. Various SDs of ATV were formulated by conventional and microwave-induced melting methods using Gelucire®48/16 as a carrier. The formulated SDs were characterized for different physicochemical characterizations, drug release, and oral bioavailability studies. The results obtained from the different physicochemical characterization indicate the molecular dispersion of ATV within various SDs. The drug polymer interaction results showed no interaction between ATV and used carrier. There was marked enhancement in the solubility (1.95-9.32 folds) was observed for ATV in prepared SDs as compare to pure ATV. The drug content was found to be in the range of 96.19% ± 2.14% to 98.34% ± 1.32%. The drug release results revealed significant enhancement in ATV release from prepared SDs compared to the pure drug and the marketed tablets. The formulation F8 showed high dissolution performance (% DE30 value of 80.65 ± 3.05) among the other formulations. Optimized Gelucire®48/16-based SDs formulation suggested improved oral absorption of atorvastatin as evidenced with improved pharmacokinetic parameters (Cmax 2864.33 ± 573.86 ng/ml; AUC0-t 5594.95 ± 623.3 ng/h ml) as compared to ATV suspension (Cmax 317.82 ± 63.56 ng/ml; AUC0-t 573.94 ± 398.9 ng/h ml) and marketed tablets (Cmax 852.72 ± 42.63 ng/ml; 4837.4 ± 174.7 ng/h ml). Conclusively, solid dispersion-based oral formulation of atorvastatin could be a promising approach for enhanced drug solubilization, dissolution, and subsequently improved absorption.


Subject(s)
Atorvastatin/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Administration, Oral , Animals , Atorvastatin/blood , Atorvastatin/chemistry , Biological Availability , Drug Carriers/chemistry , Drug Liberation , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , In Vitro Techniques , Rats , Solubility , Tablets
8.
Int J Nanomedicine ; 15: 857-869, 2020.
Article in English | MEDLINE | ID: mdl-32103942

ABSTRACT

PURPOSE: Lidocaine (LID) is a local anesthetic that is administered either by injection and/or a topical/transdermal route. However, there is a current need to develop efficacious methods for the oral delivery of LID with optimized bioavailability. METHODS: We developed oral LID biodegradable microspheres that were loaded with alginate-chitosan with different mass ratios, and characterized these microspheres in vitro. We also developed, and utilized, a simple and sensitive HPLC-tandem mass spectrometry (LC-MS-MS) method for assaying LID microspheres. RESULTS: The mean particle size (MPS) of the LID microspheres ranged from 340.7 to 528.3 nm. As the concentration of alginate was reduced, there was a significant reduction in MPS. However, there was no significant change in drug entrapment efficiency (DEE), or drug yield, when the alginate concentration was either increased or decreased. DSC measurements demonstrated the successful loading of LID to the new formulations. After a slow initial release, less than 10% of the LID was released in vitro within 4 h at pH 1.2. In order to evaluate nephrotoxicity, we carried out MTT assays of LID in two types of cell line (LLC-PK1 and MDCK). LID significantly suppressed the cell toxicity of both cell lines at the concentrations tested (100, 200, and 400ng/µL). CONCLUSION: Experiments involving the oral delivery of LID formulations showed a significant reduction in particle size and an improvement in dissolution rate. The formulations of LID developed exhibit significantly less toxicity than LID alone.


Subject(s)
Drug Delivery Systems/methods , Lidocaine/administration & dosage , Administration, Oral , Alginates/chemistry , Anesthetics, Local/administration & dosage , Anesthetics, Local/analysis , Anesthetics, Local/pharmacokinetics , Animals , Cell Line , Chitosan/chemistry , Chromatography, High Pressure Liquid , Dogs , Drug Carriers/chemistry , Drug Liberation , Lidocaine/analysis , Lidocaine/pharmacokinetics , Madin Darby Canine Kidney Cells , Microscopy, Electron, Transmission , Microspheres , Myocytes, Cardiac/drug effects , Particle Size , Rats , Tandem Mass Spectrometry
9.
Article in English | MEDLINE | ID: mdl-31029218

ABSTRACT

Paclitaxel is the first microtubule-stabilizing agent identified and considered to be the most significant advance in chemotherapy of the past two decades. It is considered one of the most widely used antineoplastic agents with broad activity in several cancers including breast cancer, endometrial cancer, non-small-cell lung cancer, bladder cancer, and cervical carcinoma. It is also used for treating AIDS-related Kaposi sarcoma as a second line treatment. This comprehensive profile of paclitaxel gives overview of nomenclature, formulae, elemental analysis, appearance, application and uses. In addition, mechanism of action and resistance, different dosage forms and methods of drug preparation are elaborated. Moreover, the physicochemical properties involving X-ray powder diffraction pattern, drug solubility, melting point, differential scanning calorimetry, and stability were summarized. Furthermore, method of drug analysis including compendial, spectrophotometric, and chromatographic was discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Paclitaxel/pharmacology , Antineoplastic Agents/chemistry , Drug Compounding , Paclitaxel/chemistry , Powders
10.
Saudi Pharm J ; 27(1): 82-87, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30662310

ABSTRACT

Emerging antibiotic resistance necessitates the development of new therapeutic approaches. Many studies have reported the antimicrobial activity of diclofenac sodium (DIC) and chitosan nanoparticles (CNPs). Hence, this study aimed to prepare non-antibiotic DIC-loaded CNPs (DIC.CNPs) and characterize their in vitro antibacterial activity. DIC.CNPs were prepared from low and high molecular weight (LMW and HMW, respectively) chitosan using an ionic gelation method. Prepared NPs were characterized, and their antibacterial activity against gram-positive Staphylococcus aureus and Bacillus subtilis was evaluated using the agar diffusion and broth dilution methods. The particle size, polydispersity index (PDI), and encapsulation efficiency of the formulated DIC.CNPs increased with increasing MW of chitosan. The prepared NPs showed a narrow size distribution with low PDI values (0.18 and 0.24) and encapsulation efficiency (29.3% and 31.1%) for LMW.DIC.CNPs and HMW.DIC.CNPs, respectively. The in vitro release profile of DIC from the DIC.CNPs was biphasic with a burst release followed by slow release and was influenced by the MW of chitosan. DIC.CNPs exhibited significantly higher antibacterial activity against S. aureus (minimum inhibitory concentration [MIC90] LMW.DIC.CNPs = 35 µg/mL and MIC90 HMW.DIC.CNPs = 18 µg/mL) and B. subtilis (MIC90 LMW.DIC.CNPs = 17.5 µg/mL and MIC90 HMW.DIC.CNPs = 9 µg/mL) than DIC alone did (MIC90 DIC = 250 and 50 µg/mL against S. aureus and B. subtilis, respectively). The antibacterial activity was influenced by pH and the MW of chitosan. Collectively, these results may suggest the potential usefulness of DIC.CNPs as non-antibiotic antibacterial agent necessitating further future studies to asses the stability of DIC.CNPs prepared.

11.
Saudi Pharm J ; 26(1): 98-106, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29379340

ABSTRACT

Shampooing is the most common form of hair treatment. Shampoos are primarily products aimed at cleansing the hair and scalp. There are many brands of shampoos in Saudi Arabia, available from different sources, locally and imported from other countries. This study aims to investigate whether such brands comply with the Saudi standard specifications for shampoos, issued by the National Center for Specifications and Standards, and to what extent these specifications are applied. Six shampoo brands were randomly collected from Riyadh market (Pantene®, Sunsilk®, Herbal essences®, Garnier Ultra Doux®, Syoss® and L'Oreal Elvive®). The selected shampoos were evaluated according to their physicochemical properties, including organoleptic characterization, pH measurement, percentage of solid content, rheological measurements, dirt dispersion level, foaming ability and foam stability, and surface tension. All shampoos had a good percentage of solids, excellent foam formation with stable foam and a highly viscous nature. Regarding the pH measurement, all shampoo samples were within the specified range with good wetting ability.

12.
Drug Deliv ; 24(1): 40-50, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28155565

ABSTRACT

Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p < 0.05) improved the bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.


Subject(s)
Amphotericin B/administration & dosage , Antifungal Agents/administration & dosage , Candida albicans/drug effects , Drug Carriers , Lactic Acid/chemistry , Nanoparticles , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , Administration, Oral , Amphotericin B/chemistry , Amphotericin B/pharmacokinetics , Amphotericin B/toxicity , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Antifungal Agents/toxicity , Biological Availability , Biomarkers/blood , Blood Urea Nitrogen , Candida albicans/growth & development , Creatinine/blood , Drug Compounding , Glycyrrhizic Acid/administration & dosage , Glycyrrhizic Acid/chemistry , Hemolysis/drug effects , Kidney Diseases/blood , Kidney Diseases/chemically induced , Lactic Acid/toxicity , Microbial Sensitivity Tests , Polyethylene Glycols/toxicity , Polyglycolic Acid/toxicity , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Technology, Pharmaceutical/methods
13.
Biomed Chromatogr ; 26(1): 6-11, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21374651

ABSTRACT

Warfarin is routinely monitored by assessing its pharmacologic effects on the international normalized ratio. However, having a patient with INR not responding to increasing warfarin dose mandates a direct measurement of warfarin concentrations (total and free) for better patient clinical management of warfarin therapy. Therefore, a new fully validated specific, precise and accurate ultra-performance liquid chromatography tandem mass spectrometry was developed for the determination of free and total warfarin in human plasma. Free warfarin was measured in plasma filtrate, prepared by ultrafiltration, and sample pretreatment involved protein precipitation with acetonitrile. Linear response (r(2) ≥0.99) was observed over the studied range of free and total warfarin, with the lower limit of detection of 0.25 ng/mL. The intra- and inter-day precision (relative standard deviation) values were <10% and the accuracy (relative error) was ≤6.6 for free and total warfarin. There was no significant difference (p>0.05) between inter- and intra-day studies for the free and total warfarin, which confirmed the reproducibility of the assay method. The mean extraction efficiency was 88.6-107.2% of free and total warfarin. The assay was sensitive to follow warfarin pharmacokinetics (free and total) in a patient with resistance to warfarin up to 24 h after a daily dose of warfarin.


Subject(s)
Anticoagulants/blood , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Warfarin/blood , Analysis of Variance , Anticoagulants/administration & dosage , Anticoagulants/pharmacokinetics , Area Under Curve , Drug Monitoring , Etoricoxib , Female , Humans , International Normalized Ratio , Limit of Detection , Linear Models , Middle Aged , Pyridines/blood , Reproducibility of Results , Sulfones/blood , Warfarin/administration & dosage , Warfarin/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...