Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(23): 33685-33707, 2024 May.
Article in English | MEDLINE | ID: mdl-38691282

ABSTRACT

Carbon dioxide (CO2) emissions result from human activities like burning fossil fuels. CO2 is a greenhouse gas, contributing to global warming and climate change. Efforts to reduce CO2 emissions include transitioning to renewable energy. Monitoring and reducing CO2 emissions are crucial for mitigating climate change. Strategies include energy efficiency and renewable energy adoption. In the past few decades, several nations have experienced air pollution and environmental difficulties because of carbon dioxide (CO2) emissions. One of the most crucial methods for regulating and maximizing CO2 emission reductions is precise forecasting. Four machine learning algorithms with high forecasting precision and low data requirements were developed in this study to estimate CO2 emissions in the United States (US). Data from a dataset covering the years 1973/01 to 2022/07 that included information on different energy sources that had an impact on CO2 emissions were examined. Then, four algorithms performed the CO2 emissions forecast from the layer recurrent neural network with 10 nodes (L-RNN), a feed-forward neural network with 10 nodes (FFNN), a convolutional neural network with two layers with 10 and 5 filters (CNN1), and convolutional neural network with two layers and with 50 and 25 filters (CNN2) models. Each algorithm's forecast accuracy was assessed using eight indicators. The three preprocessing techniques used are (1) without any processing techniques, (2) processed using max-min normalization technique, and (3) processed using max-min normalization technique and decomposed by variation mode decomposition (VMD) technique with 7 intrinsic mode functions and 1000 iterations. The latter with L-RNN algorithm gave a high accuracy between the forecasting and actual values. The results of CO2 emissions from 2011/05 to 2022/07 have been forecasted, and the L-RNN algorithm had the highest forecast accuracy. The L-RNN model has the lowest value of 1.187028078, 135.5668592, and 11.64331822 for MAPE, MSE, and RMSE, respectively. The L-RNN model provides precise and timely forecasts that can help formulate plans to reduce carbon emissions and contribute to a more sustainable future. Moreover, the results of this investigation can improve our comprehension of the dynamics of carbon dioxide emissions, resulting in better-informed environmental policies and initiatives targeted at lowering carbon emissions.


Subject(s)
Algorithms , Carbon Dioxide , Machine Learning , Carbon Dioxide/analysis , United States , Air Pollution , Environmental Monitoring/methods , Air Pollutants/analysis , Climate Change , Forecasting
2.
Front Hum Neurosci ; 17: 1190203, 2023.
Article in English | MEDLINE | ID: mdl-37719771

ABSTRACT

Introduction: Despite the existence of numerous clinical techniques for identifying neurological brain disorders in their early stages, Electroencephalogram (EEG) data shows great promise as a means of detecting Alzheimer's disease (AD) at an early stage. The main goal of this research is to create a reliable and accurate clinical decision support system leveraging EEG signal processing to detect AD in its initial phases. Methods: The research utilized a dataset consisting of 35 neurotypical individuals, 31 patients with mild AD, and 22 patients with moderate AD. Data were collected while participants were at rest. To extract features from the EEG signals, a band-pass filter was applied to the dataset and the Empirical Mode Decomposition (EMD) technique was employed to decompose the filtered signals. The EMD technique was then leveraged to generate feature vectors by combining multiple signal features, thereby enhancing diagnostic performance. Various artificial intelligence approaches were also explored and compared to identify features of the extracted EEG signals distinguishing mild AD, moderate AD, and neurotypical cases. The performance of the classifiers was evaluated using k-fold cross-validation and leave-one-subject-out (LOSO) cross-validation methods. Results: The results of this study provided valuable insights into potential avenues for the early diagnosis of AD. The performance of the various offered methodologies has been compared and evaluated by computing the overall diagnosis precision, recall, and accuracy. The proposed methodologies achieved a maximum classification accuracy of 99.9 and 94.8% for k-fold and LOSO cross-validation techniques, respectively. Conclusion: The study aims to assess and compare different proposed methodologies and determine the most effective combination approach for the early detection of AD. Our research findings strongly suggest that the proposed diagnostic support technique is a highly promising supplementary tool for discovering prospective diagnostic biomarkers that can greatly aid in the early clinical diagnosis of AD.

3.
Sci Rep ; 12(1): 22547, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581646

ABSTRACT

Early detection of Parkinson's disease (PD) is very important in clinical diagnosis for preventing disease development. In this study, we present efficient discrete wavelet transform (DWT)-based methods for detecting PD from health control (HC) in two cases, namely, off-and on-medication. First, the EEG signals are preprocessed to remove major artifacts before being decomposed into several EEG sub-bands (approximate and details) using DWT. The features are then extracted from the wavelet packet-derived reconstructed signals using different entropy measures, namely, log energy entropy, Shannon entropy, threshold entropy, sure entropy, and norm entropy. Several machine learning techniques are investigated to classify the resulting PD/HC features. The effects of DWT coefficients and brain regions on classification accuracy are being investigated as well. Two public datasets are used to verify the proposed methods: the SanDiego dataset (31 subjects, 93 min) and the UNM dataset (54 subjects, 54 min). The results are promising and show that four entropy measures: log energy entropy, threshold entropy, sure entropy, and modified-Shannon entropy (TShEn) lead to high classification accuracy, indicating they are good biomarkers for PD detection. With the SanDiego dataset, the classification results of off-medication PD versus HC are 99.89, 99.87, and 99.91 for accuracy, sensitivity, and specificity, respectively, using the combination of DWT + TShEn and KNN classifier. Using the same combination, the results of on-medication PD versus HC are 94.21, 93.33, and 95%. With the UNM dataset, the obtained classification accuracy is around 99.5% in both cases of off-and on-medication PD using DWT + TShEn + SVM and DWT + ThEn + KNN, respectively. The results also demonstrate the importance of all DWT coefficients and that selecting a suitable small number of EEG channels from several brain regions could improve the classification accuracy.


Subject(s)
Parkinson Disease , Wavelet Analysis , Humans , Parkinson Disease/diagnosis , Electroencephalography/methods , Brain , Machine Learning , Algorithms , Signal Processing, Computer-Assisted
4.
Diagnostics (Basel) ; 12(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35626189

ABSTRACT

Parkinson's disease (PD) is a very common brain abnormality that affects people all over the world. Early detection of such abnormality is critical in clinical diagnosis in order to prevent disease progression. Electroencephalography (EEG) is one of the most important PD diagnostic tools since this disease is linked to the brain. In this study, novel efficient common spatial pattern-based approaches for detecting Parkinson's disease in two cases, off-medication and on-medication, are proposed. First, the EEG signals are preprocessed to remove major artifacts before spatial filtering using a common spatial pattern. Several features are extracted from spatially filtered signals using different metrics, namely, variance, band power, energy, and several types of entropy. Machine learning techniques, namely, random forest, linear/quadratic discriminant analysis, support vector machine, and k-nearest neighbor, are investigated to classify the extracted features. The impacts of frequency bands, segment length, and reduction number on the results are also investigated in this work. The proposed methods are tested using two EEG datasets: the SanDiego dataset (31 participants, 93 min) and the UNM dataset (54 participants, 54 min). The results show that the proposed methods, particularly the combination of common spatial patterns and log energy entropy, provide competitive results when compared to methods in the literature. The achieved results in terms of classification accuracy, sensitivity, and specificity in the case of off-medication PD detection are around 99%. In the case of on-medication PD, the results range from 95% to 98%. The results also reveal that features extracted from the alpha and beta bands have the highest classification accuracy.

5.
PLoS One ; 16(2): e0247442, 2021.
Article in English | MEDLINE | ID: mdl-33635903

ABSTRACT

BACKGROUND: The handling of unknown weights, which is common in daily routines either at work or during leisure time, is suspected to be highly associated with the incidence of low back pain (LBP). OBJECTIVES: To investigate the effects of knowledge and magnitude of a load (to be lifted) on brain responses, autonomic nervous activity, and trapezius and erector spinae muscle activity. METHODS: A randomized, within-subjects experiment involving manual lifting was conducted, wherein 10 participants lifted three different weights (1.1, 5, and 15 kg) under two conditions: either having or not having prior knowledge of the weight to be lifted. RESULTS: The results revealed that the lifting of unknown weights caused increased average heart rate and percentage of maximum voluntary contraction (%MVC) but decreased average inter-beat interval, very-low-frequency power, low-frequency power, and low-frequency/high-frequency ratio. Regardless of the weight magnitude, lifting of unknown weights was associated with smaller theta activities in the power spectrum density (PSD) of the central region, smaller alpha activities in the PSD of the frontal region, and smaller beta activities in the PSDs of both the frontal and central regions. Moreover, smaller alpha and beta activities in the PSD of the parietal region were associated only with lifting of unknown lightweights. CONCLUSIONS: Uncertainty regarding the weight to be lifted could be considered as a stress-adding variable that may increase the required physical demand to be sustained during manual lifting tasks. The findings of this study stress the importance of eliminating uncertainty associated with handling unknown weights, such as in the cases of handling patients and dispatching luggage. This can be achieved through preliminary self-sensing of the load to be lifted, or the cautious disclosure of the actual weight of manually lifted objects, for example, through clear labeling and/or a coding system.


Subject(s)
Autonomic Nervous System/physiology , Brain/physiology , Lifting/adverse effects , Superficial Back Muscles/physiology , Uncertainty , Adult , Electrocardiography , Electroencephalography , Electromyography , Healthy Volunteers , Heart Rate , Humans , Male
6.
Sensors (Basel) ; 20(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354161

ABSTRACT

Analysis of electroencephalogram (EEG) signals is essential because it is an efficient method to diagnose neurological brain disorders. In this work, a single system is developed to diagnose one or two neurological diseases at the same time (two-class mode and three-class mode). For this purpose, different EEG feature-extraction and classification techniques are investigated to aid in the accurate diagnosis of neurological brain disorders: epilepsy and autism spectrum disorder (ASD). Two different modes, single-channel and multi-channel, of EEG signals are analyzed for epilepsy and ASD. The independent components analysis (ICA) technique is used to remove the artifacts from EEG dataset. Then, the EEG dataset is segmented and filtered to remove noise and interference using an elliptic band-pass filter. Next, the EEG signal features are extracted from the filtered signal using a discrete wavelet transform (DWT) to decompose the filtered signal to its sub-bands delta, theta, alpha, beta and gamma. Subsequently, five statistical methods are used to extract features from the EEG sub-bands: the logarithmic band power (LBP), standard deviation, variance, kurtosis, and Shannon entropy (SE). Further, the features are fed into four different classifiers, linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbor (KNN), and artificial neural networks (ANNs), to classify the features corresponding to their classes. The combination of DWT with SE and LBP produces the highest accuracy among all the classifiers. The overall classification accuracy approaches 99.9% using SVM and 97% using ANN for the three-class single-channel and multi-channel modes, respectively.


Subject(s)
Electroencephalography/methods , Wavelet Analysis , Discriminant Analysis , Entropy , Humans , Neural Networks, Computer , Support Vector Machine
7.
Biomed Res Int ; 2017: 9816591, 2017.
Article in English | MEDLINE | ID: mdl-28484720

ABSTRACT

Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD) of autism based on electroencephalography (EEG) signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT), entropy (En), and artificial neural network (ANN). DWT is used to decompose EEG signals into approximation and details coefficients to obtain EEG subbands. The feature vector is constructed by computing Shannon entropy values from each EEG subband. ANN classifies the corresponding EEG signal into normal or autistic based on the extracted features. The experimental results show the effectiveness of the proposed method for assisting autism diagnosis. A receiver operating characteristic (ROC) curve metric is used to quantify the performance of the proposed method. The proposed method obtained promising results tested using real dataset provided by King Abdulaziz Hospital, Jeddah, Saudi Arabia.


Subject(s)
Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/physiopathology , Diagnosis, Computer-Assisted/methods , Electroencephalography , Models, Neurological , Neural Networks, Computer , Wavelet Analysis , Entropy , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...