Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38648155

ABSTRACT

Evaluation of human gait through smartphone-based pose estimation algorithms provides an attractive alternative to costly lab-bound instrumented assessment and offers a paradigm shift with real time gait capture for clinical assessment. Systems based on smart phones, such as OpenPose and BlazePose have demonstrated potential for virtual motion assessment but still lack the accuracy and repeatability standards required for clinical viability. Seq2seq architecture offers an alternative solution to conventional deep learning techniques for predicting joint kinematics during gait. This study introduces a novel enhancement to the low-powered BlazePose algorithm by incorporating a Seq2seq autoencoder deep learning model. To ensure data accuracy and reliability, synchronized motion capture involving an RGB camera and ten Vicon cameras were employed across three distinct self-selected walking speeds. This investigation presents a groundbreaking avenue for remote gait assessment, harnessing the potential of Seq2seq architectures inspired by natural language processing (NLP) to enhance pose estimation accuracy. When comparing BlazePose alone to the combination of BlazePose and 1D convolution Long Short-term Memory Network (1D-LSTM), Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), the average mean absolute errors decreased from 13.4° to 5.3° for fast gait, from 16.3° to 7.5° for normal gait, and from 15.5° to 7.5° for slow gait at the left ankle joint angle respectively. The strategic utilization of synchronized data and rigorous testing methodologies further bolsters the robustness and credibility of these findings.


Subject(s)
Algorithms , Deep Learning , Gait , Humans , Gait/physiology , Biomechanical Phenomena , Reproducibility of Results , Male , Smartphone , Natural Language Processing , Female , Adult , Young Adult , Neural Networks, Computer , Gait Analysis/methods , Walking Speed/physiology
2.
Sci Rep ; 14(1): 6039, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38472245

ABSTRACT

Alzheimer's disease (AD) is an incurable neurodegenerative disorder that leads to dementia. This study employs explainable machine learning models to detect dementia cases using blood gene expression, single nucleotide polymorphisms (SNPs), and clinical data from Alzheimer's Disease Neuroimaging Initiative (ADNI). Analyzing 623 ADNI participants, we found that the Support Vector Machine classifier with Mutual Information (MI) feature selection, trained on all three data modalities, achieved exceptional performance (accuracy = 0.95, AUC = 0.94). When using gene expression and SNP data separately, we achieved very good performance (AUC = 0.65, AUC = 0.63, respectively). Using SHapley Additive exPlanations (SHAP), we identified significant features, potentially serving as AD biomarkers. Notably, genetic-based biomarkers linked to axon myelination and synaptic vesicle membrane formation could aid early AD detection. In summary, this genetic-based biomarker approach, integrating machine learning and SHAP, shows promise for precise AD diagnosis, biomarker discovery, and offers novel insights for understanding and treating the disease. This approach addresses the challenges of accurate AD diagnosis, which is crucial given the complexities associated with the disease and the need for non-invasive diagnostic methods.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/genetics , Neuroimaging/methods , Biomarkers , Machine Learning , Early Diagnosis , Magnetic Resonance Imaging/methods
3.
PLoS One ; 19(1): e0291373, 2024.
Article in English | MEDLINE | ID: mdl-38206939

ABSTRACT

BACKGROUND: The current situation of the unprecedented COVID-19 pandemic leverages Artificial Intelligence (AI) as an innovative tool for addressing the evolving clinical challenges. An example is utilizing Machine Learning (ML) models-a subfield of AI that take advantage of observational data/Electronic Health Records (EHRs) to support clinical decision-making for COVID-19 cases. This study aimed to evaluate the clinical characteristics and risk factors for COVID-19 patients in the United Arab Emirates utilizing EHRs and ML for survival analysis models. METHODS: We tested various ML models for survival analysis in this work we trained those models using a different subset of features extracted by several feature selection methods. Finally, the best model was evaluated and interpreted using goodness-of-fit based on calibration curves,Partial Dependence Plots and concordance index. RESULTS: The risk of severe disease increases with elevated levels of C-reactive protein, ferritin, lactate dehydrogenase, Modified Early Warning Score, respiratory rate and troponin. The risk also increases with hypokalemia, oxygen desaturation and lower estimated glomerular filtration rate and hypocalcemia and lymphopenia. CONCLUSION: Analyzing clinical data using AI models can provide vital information for clinician to measure the risk of morbidity and mortality of COVID-19 patients. Further validation is crucial to implement the model in real clinical settings.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Artificial Intelligence , Retrospective Studies , United Arab Emirates/epidemiology , Pandemics , Risk Factors , Intensive Care Units , Machine Learning , Survival Analysis
4.
BMC Med Genomics ; 16(Suppl 2): 244, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833700

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is an incurable, debilitating neurodegenerative disorder. Current biomarkers for AD diagnosis require expensive neuroimaging or invasive cerebrospinal fluid sampling, thus precluding early detection. Blood-based biomarker discovery in Alzheimer's can facilitate less-invasive, routine diagnostic tests to aid early intervention. Therefore, we propose "c-Diadem" (constrained dual-input Alzheimer's disease model), a novel deep learning classifier which incorporates KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway constraints on the input genotyping data to predict disease, i.e., mild cognitive impairment (MCI)/AD or cognitively normal (CN). SHAP (SHapley Additive exPlanations) was used to explain the model and identify novel, potential blood-based genetic markers of MCI/AD. METHODS: We developed a novel constrained deep learning neural network which utilizes SNPs (single nucleotide polymorphisms) and microarray data from ADNI (Alzheimer's Disease Neuroimaging Initiative) to predict the disease status of participants, i.e., CN or with disease (MCI/AD), and identify potential blood-based biomarkers for diagnosis and intervention. The dataset contains samples from 626 participants, of which 212 are CN (average age 74.6 ± 5.4 years) and 414 patients have MCI/AD (average age 72.7 ± 7.6 years). KEGG pathway information was used to generate constraints applied to the input tensors, thus enhancing the interpretability of the model. SHAP scores were used to identify genes which could potentially serve as biomarkers for diagnosis and targets for drug development. RESULTS: Our model's performance, with accuracy of 69% and AUC of 70% in the test dataset, is superior to previous models. The SHAP scores show that SNPs in PRKCZ, PLCB1 and ITPR2 as well as expression of HLA-DQB1, EIF1AY, HLA-DQA1, and ZFP57 have more impact on model predictions. CONCLUSIONS: In addition to predicting MCI/AD, our model has been interrogated for potential genetic biomarkers using SHAP. From our analysis, we have identified blood-based genetic markers related to Ca2+ ion release in affected regions of the brain, as well as depression. The findings from our study provides insights into disease mechanisms, and can facilitate innovation in less-invasive, cost-effective diagnostics. To the best of our knowledge, our model is the first to use pathway constraints in a multimodal neural network to identify potential genetic markers for AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Deep Learning , Humans , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Magnetic Resonance Imaging/methods , Genetic Markers , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics
5.
J Big Data ; 10(1): 92, 2023.
Article in English | MEDLINE | ID: mdl-37303479

ABSTRACT

Nitrogen Dioxide (NO2) is a common air pollutant associated with several adverse health problems such as pediatric asthma, cardiovascular mortality,and respiratory mortality. Due to the urgent society's need to reduce pollutant concentration, several scientific efforts have been allocated to understand pollutant patterns and predict pollutants' future concentrations using machine learning and deep learning techniques. The latter techniques have recently gained much attention due it's capability to tackle complex and challenging problems in computer vision, natural language processing, etc. In the NO2 context, there is still a research gap in adopting those advanced methods to predict the concentration of pollutants. This study fills in the gap by comparing the performance of several state-of-the-art artificial intelligence models that haven't been adopted in this context yet. The models were trained using time series cross-validation on a rolling base and tested across different periods using NO2 data from 20 monitoring ground-based stations collected by Environment Agency- Abu Dhabi, United Arab Emirates. Using the seasonal Mann-Kendall trend test and Sen's slope estimator, we further explored and investigated the pollutants trends across the different stations. This study is the first comprehensive study that reported the temporal characteristic of NO2 across seven environmental assessment points and compared the performance of the state-of-the-art deep learning models for predicting the pollutants' future concentration. Our results reveal a difference in the pollutants concentrations level due to the geographic location of the different stations, with a statistically significant decrease in the NO2 annual trend for the majority of the stations. Overall, NO2 concentrations exhibit a similar daily and weekly pattern across the different stations, with an increase in the pollutants level during the early morning and the first working day. Comparing the state-of-the-art model performance transformer model demonstrate the superiority of ( MAE:0.04 (± 0.04),MSE:0.06 (± 0.04), RMSE:0.001 (± 0.01), R2: 0.98 (± 0.05)), compared with LSTM (MAE:0.26 (± 0.19), MSE:0.31 (± 0.21), RMSE:0.14 (± 0.17), R2: 0.56 (± 0.33)), InceptionTime (MAE: 0.19 (± 0.18), MSE: 0.22 (± 0.18), RMSE:0.08 (± 0.13), R2:0.38 (± 1.35) ), ResNet (MAE:0.24 (± 0.16), MSE:0.28 (± 0.16), RMSE:0.11 (± 0.12), R2:0.35 (± 1.19) ), XceptionTime (MAE:0.7 (± 0.55), MSE:0.79 (± 0.54), RMSE:0.91 (± 1.06), R2: -4.83 (± 9.38) ), and MiniRocket (MAE:0.21 (± 0.07), MSE:0.26 (± 0.08), RMSE:0.07 (± 0.04), R2: 0.65 (± 0.28) ) to tackle this challenge. The transformer model is a powerful model for improving the accurate forecast of the NO2 levels and could strengthen the current monitoring system to control and manage the air quality in the region. Supplementary Information: The online version contains supplementary material available at 10.1186/s40537-023-00754-z.

6.
PLoS One ; 18(5): e0285346, 2023.
Article in English | MEDLINE | ID: mdl-37224131

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that causes gradual memory loss. AD and its prodromal stage of mild cognitive impairment (MCI) are marked by significant gut microbiome perturbations, also known as gut dysbiosis. However, the direction and extent of gut dysbiosis have not been elucidated. Therefore, we performed a meta-analysis and systematic review of 16S gut microbiome studies to gain insights into gut dysbiosis in AD and MCI. METHODS: We searched MEDLINE, Scopus, EMBASE, EBSCO, and Cochrane for AD gut microbiome studies published between Jan 1, 2010 and Mar 31, 2022. This study has two outcomes: primary and secondary. The primary outcomes explored the changes in α-diversity and relative abundance of microbial taxa, which were analyzed using a variance-weighted random-effects model. The secondary outcomes focused on qualitatively summarized ß-diversity ordination and linear discriminant analysis effect sizes. The risk of bias was assessed using a methodology appropriate for the included case-control studies. The geographic cohorts' heterogeneity was examined using subgroup meta-analyses if sufficient studies reported the outcome. The study protocol has been registered with PROSPERO (CRD42022328141). FINDINGS: Seventeen studies with 679 AD and MCI patients and 632 controls were identified and analyzed. The cohort is 61.9% female with a mean age of 71.3±6.9 years. The meta-analysis shows an overall decrease in species richness in the AD gut microbiome. However, the phylum Bacteroides is consistently higher in US cohorts (standardised mean difference [SMD] 0.75, 95% confidence interval [CI] 0.37 to 1.13, p < 0.01) and lower in Chinese cohorts (SMD -0.79, 95% CI -1.32 to -0.25, p < 0.01). Moreover, the Phascolarctobacterium genus is shown to increase significantly, but only during the MCI stage. DISCUSSION: Notwithstanding possible confounding from polypharmacy, our findings show the relevance of diet and lifestyle in AD pathophysiology. Our study presents evidence for region-specific changes in abundance of Bacteroides, a major constituent of the microbiome. Moreover, the increase in Phascolarctobacterium and the decrease in Bacteroides in MCI subjects shows that gut microbiome dysbiosis is initiated in the prodromal stage. Therefore, studies of the gut microbiome can facilitate early diagnosis and intervention in Alzheimer's disease and perhaps other neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Gastrointestinal Microbiome , Humans , Female , Middle Aged , Aged , Male , Dysbiosis , Prodromal Symptoms , Bacteroides
7.
Article in English | MEDLINE | ID: mdl-33672320

ABSTRACT

Noise pollution is a growing global public health concern. Among other issues, it has been linked with sleep disturbance, hearing functionality, increased blood pressure and heart disease. Individuals are increasingly using social media to express complaints and concerns about problematic noise sources. This behavior-using social media to post noise-related concerns-might help us better identify troublesome noise pollution hotspots, thereby enabling us to take corrective action. The present work is a concept case study exploring the use of social media data as a means of identifying and monitoring noise annoyance across the United Arab Emirates (UAE). We explored an extract of Twitter data for the UAE, comprising over eight million messages (tweets) sent during 2015. We employed a search algorithm to identify tweets concerned with noise annoyance and, where possible, we also extracted the exact location via Global Positioning System (GPS) coordinates) associated with specific messages/complaints. The identified noise complaints were organized in a digital database and analyzed according to three criteria: first, the main types of the noise source (music, human factors, transport infrastructures); second, exterior or interior noise source and finally, date and time of the report, with the location of the Twitter user. This study supports the idea that lexicon-based analyses of large social media datasets may prove to be a useful adjunct or as a complement to existing noise pollution identification and surveillance strategies.


Subject(s)
Social Media , Data Mining , Humans , Noise/adverse effects , Public Health , United Arab Emirates
SELECTION OF CITATIONS
SEARCH DETAIL
...